These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 27105138)

  • 21. CPD damage recognition by transcribing RNA polymerase II.
    Brueckner F; Hennecke U; Carell T; Cramer P
    Science; 2007 Feb; 315(5813):859-62. PubMed ID: 17290000
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structure of an RNA polymerase II-RNA inhibitor complex elucidates transcription regulation by noncoding RNAs.
    Kettenberger H; Eisenführ A; Brueckner F; Theis M; Famulok M; Cramer P
    Nat Struct Mol Biol; 2006 Jan; 13(1):44-8. PubMed ID: 16341226
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Control of elongation by RNA polymerase II.
    Conaway JW; Shilatifard A; Dvir A; Conaway RC
    Trends Biochem Sci; 2000 Aug; 25(8):375-80. PubMed ID: 10916156
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A comprehensive mechanism for 5-carboxylcytosine-induced transcriptional pausing revealed by Markov state models.
    Konovalov KA; Wang W; Wang G; Goonetilleke EC; Gao X; Wang D; Huang X
    J Biol Chem; 2021; 296():100735. PubMed ID: 33991521
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transcription-coupled and DNA damage-dependent ubiquitination of RNA polymerase II in vitro.
    Lee KB; Wang D; Lippard SJ; Sharp PA
    Proc Natl Acad Sci U S A; 2002 Apr; 99(7):4239-44. PubMed ID: 11904382
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The RNA polymerase II transcriptional machinery and its epigenetic context.
    Barrero MJ; Malik S
    Subcell Biochem; 2013; 61():237-59. PubMed ID: 23150254
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genome-wide RNA polymerase II profiles and RNA accumulation reveal kinetics of transcription and associated epigenetic changes during diurnal cycles.
    Le Martelot G; Canella D; Symul L; Migliavacca E; Gilardi F; Liechti R; Martin O; Harshman K; Delorenzi M; Desvergne B; Herr W; Deplancke B; Schibler U; Rougemont J; Guex N; Hernandez N; Naef F;
    PLoS Biol; 2012; 10(11):e1001442. PubMed ID: 23209382
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of endogenous DNA base lesions on transcription elongation by mammalian RNA polymerase II. Implications for transcription-coupled DNA repair and transcriptional mutagenesis.
    Kuraoka I; Endou M; Yamaguchi Y; Wada T; Handa H; Tanaka K
    J Biol Chem; 2003 Feb; 278(9):7294-9. PubMed ID: 12466278
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Impact of template backbone heterogeneity on RNA polymerase II transcription.
    Xu L; Wang W; Zhang L; Chong J; Huang X; Wang D
    Nucleic Acids Res; 2015 Feb; 43(4):2232-41. PubMed ID: 25662224
    [TBL] [Abstract][Full Text] [Related]  

  • 30. RNA polymerase II transcript elongation.
    Svejstrup JQ
    Biochim Biophys Acta; 2013 Jan; 1829(1):1. PubMed ID: 23312801
    [No Abstract]   [Full Text] [Related]  

  • 31. Effect of a monofunctional phenanthriplatin-DNA adduct on RNA polymerase II transcriptional fidelity and translesion synthesis.
    Kellinger MW; Park GY; Chong J; Lippard SJ; Wang D
    J Am Chem Soc; 2013 Sep; 135(35):13054-61. PubMed ID: 23927577
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Strand-specific (asymmetric) contribution of phosphodiester linkages on RNA polymerase II transcriptional efficiency and fidelity.
    Xu L; Zhang L; Chong J; Xu J; Huang X; Wang D
    Proc Natl Acad Sci U S A; 2014 Aug; 111(32):E3269-76. PubMed ID: 25074911
    [TBL] [Abstract][Full Text] [Related]  

  • 33. RNA polymerase-DNA interaction: structures of intermediate, open, and elongation complexes.
    Ebright RH
    Cold Spring Harb Symp Quant Biol; 1998; 63():11-20. PubMed ID: 10384266
    [No Abstract]   [Full Text] [Related]  

  • 34. Inhibition of RNA polymerase II transcription in human cell extracts by cisplatin DNA damage.
    Cullinane C; Mazur SJ; Essigmann JM; Phillips DR; Bohr VA
    Biochemistry; 1999 May; 38(19):6204-12. PubMed ID: 10320349
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural basis for the initiation of eukaryotic transcription-coupled DNA repair.
    Xu J; Lahiri I; Wang W; Wier A; Cianfrocco MA; Chong J; Hare AA; Dervan PB; DiMaio F; Leschziner AE; Wang D
    Nature; 2017 Nov; 551(7682):653-657. PubMed ID: 29168508
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Architecture of the RNA polymerase II-TFIIS complex and implications for mRNA cleavage.
    Kettenberger H; Armache KJ; Cramer P
    Cell; 2003 Aug; 114(3):347-57. PubMed ID: 12914699
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural and biochemical analysis of DNA lesion-induced RNA polymerase II arrest.
    Oh J; Xu J; Chong J; Wang D
    Methods; 2019 Apr; 159-160():29-34. PubMed ID: 30797902
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structure and dynamics of RNA polymerase II elongation complex.
    Suenaga A; Okimoto N; Futatsugi N; Hirano Y; Narumi T; Ohno Y; Yanai R; Hirokawa T; Ebisuzaki T; Konagaya A; Taiji M
    Biochem Biophys Res Commun; 2006 Apr; 343(1):90-8. PubMed ID: 16529717
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanism of transcription-coupled DNA modification recognition.
    Shin JH; Xu L; Wang D
    Cell Biosci; 2017; 7():9. PubMed ID: 28239446
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanism of RNA polymerase II bypass of oxidative cyclopurine DNA lesions.
    Walmacq C; Wang L; Chong J; Scibelli K; Lubkowska L; Gnatt A; Brooks PJ; Wang D; Kashlev M
    Proc Natl Acad Sci U S A; 2015 Feb; 112(5):E410-9. PubMed ID: 25605892
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.