These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 27105984)

  • 1. Electrical-thermal analytical modeling of monopolar RF thermal ablation of biological tissues: determining the circumstances under which tissue temperature reaches a steady state.
    Lopez Molina JA; Rivera MJ; Berjano E
    Math Biosci Eng; 2016 Apr; 13(2):281-301. PubMed ID: 27105984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of blood vessel on the thermal lesion formation during radiofrequency ablation for liver tumors.
    Huang HW
    Med Phys; 2013 Jul; 40(7):073303. PubMed ID: 23822457
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computer modeling of factors that affect the minimum safety distance required for radiofrequency ablation near adjacent nontarget structures.
    Liu Z; Ahmed M; Gervais D; Humphries S; Goldberg SN
    J Vasc Interv Radiol; 2008 Jul; 19(7):1079-86. PubMed ID: 18589323
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RF tumour ablation: computer simulation and mathematical modelling of the effects of electrical and thermal conductivity.
    Lobo SM; Liu ZJ; Yu NC; Humphries S; Ahmed M; Cosman ER; Lenkinski RE; Goldberg W; Goldberg SN
    Int J Hyperthermia; 2005 May; 21(3):199-213. PubMed ID: 16019848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparisons of Lesion Volumes and Shapes Produced by a Radiofrequency System with a Cooled, a Protruding, or a Monopolar Probe.
    Cedeno DL; Vallejo A; Kelley CA; Tilley DM; Kumar N
    Pain Physician; 2017 Sep; 20(6):E915-E922. PubMed ID: 28934795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical modeling of RF ablation with internally cooled electrodes: comparative study of different thermal boundary conditions at the electrode-tissue interface.
    Rivera MJ; Molina JA; Trujillo M; Berjano EJ
    Math Biosci Eng; 2009 Jul; 6(3):611-27. PubMed ID: 19566131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of the thermal wave in radiofrequency ablation modeling: an analytical study.
    Molina JA; Rivera MJ; Trujillo M; Berjano EJ
    Phys Med Biol; 2008 Mar; 53(5):1447-62. PubMed ID: 18296772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the RF ablation-induced 'oven effect': the importance of background tissue thermal conductivity on tissue heating.
    Liu Z; Ahmed M; Weinstein Y; Yi M; Mahajan RL; Goldberg SN
    Int J Hyperthermia; 2006 Jun; 22(4):327-42. PubMed ID: 16754353
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How coagulation zone size is underestimated in computer modeling of RF ablation by ignoring the cooling phase just after RF power is switched off.
    Irastorza RM; Trujillo M; Berjano E
    Int J Numer Method Biomed Eng; 2017 Nov; 33(11):. PubMed ID: 28146314
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ex vivo experiment of saline-enhanced hepatic bipolar radiofrequency ablation with a perfused needle electrode: comparison with conventional monopolar and simultaneous monopolar modes.
    Lee JM; Kim SH; Han JK; Sohn KL; Choi BI
    Cardiovasc Intervent Radiol; 2005; 28(3):338-45. PubMed ID: 15789259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Factors that affect radiofrequency heat lesion size.
    Cosman ER; Dolensky JR; Hoffman RA
    Pain Med; 2014 Dec; 15(12):2020-36. PubMed ID: 25312825
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparative experimental study of the in-vitro efficiency of hypertonic saline-enhanced hepatic bipolar and monopolar radiofrequency ablation.
    Lee JM; Han JK; Kim SH; Sohn KL; Lee KH; Ah SK; Choi BI
    Korean J Radiol; 2003; 4(3):163-9. PubMed ID: 14530645
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational modelling of internally cooled wet (ICW) electrodes for radiofrequency ablation: impact of rehydration, thermal convection and electrical conductivity.
    Trujillo M; Bon J; Berjano E
    Int J Hyperthermia; 2017 Sep; 33(6):624-634. PubMed ID: 28540782
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computer modelling of an impedance-controlled pulsing protocol for RF tumour ablation with a cooled electrode.
    Trujillo M; Bon J; José Rivera M; Burdío F; Berjano E
    Int J Hyperthermia; 2016 Dec; 32(8):931-939. PubMed ID: 27452352
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A finite element model for radiofrequency ablation of the myocardium.
    Shahidi AV; Savard P
    IEEE Trans Biomed Eng; 1994 Oct; 41(10):963-8. PubMed ID: 7959803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal modeling for pulsed radiofrequency ablation: analytical study based on hyperbolic heat conduction.
    López Molina JA; Rivera MJ; Trujillo M; Berjano EJ
    Med Phys; 2009 Apr; 36(4):1112-9. PubMed ID: 19472616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bipolar radiofrequency ablation: is the shape of the coagulation volume different in comparison to monopolar RF-ablation using variable active tip lengths?
    Bruners P; Lipka J; Günther RW; Schmitz-Rode T; Mahnken AH
    Minim Invasive Ther Allied Technol; 2008; 17(5):267-74. PubMed ID: 18855208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wet radio-frequency ablation using multiple electrodes: comparative study of bipolar versus monopolar modes in the bovine liver.
    Lee JM; Han JK; Kim SH; Han CJ; An SK; Lee JY; Choi BI
    Eur J Radiol; 2005 Jun; 54(3):408-17. PubMed ID: 15899344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computer modeling of the combined effects of perfusion, electrical conductivity, and thermal conductivity on tissue heating patterns in radiofrequency tumor ablation.
    Ahmed M; Liu Z; Humphries S; Goldberg SN
    Int J Hyperthermia; 2008 Nov; 24(7):577-88. PubMed ID: 18608580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Finite volume analysis of temperature effects induced by active MRI implants: 2. Defects on active MRI implants causing hot spots.
    Busch MH; Vollmann W; Grönemeyer DH
    Biomed Eng Online; 2006 May; 5():35. PubMed ID: 16729878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.