These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 27105987)

  • 1. A mathematical model for the spread of west nile virus in migratory and resident birds.
    Bergsman LD; Hyman JM; Manore CA
    Math Biosci Eng; 2016 Apr; 13(2):401-24. PubMed ID: 27105987
    [TBL] [Abstract][Full Text] [Related]  

  • 2. West Nile Virus Activity in a Winter Roost of American Crows (Corvus brachyrhynchos): Is Bird-To-Bird Transmission Important in Persistence and Amplification?
    Hinton MG; Reisen WK; Wheeler SS; Townsend AK
    J Med Entomol; 2015 Jul; 52(4):683-92. PubMed ID: 26335475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bird community composition linked to human West Nile virus cases along the Colorado front range.
    McKenzie VJ; Goulet NE
    Ecohealth; 2010 Dec; 7(4):439-47. PubMed ID: 21125307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. West Nile virus transmission and ecology in birds.
    McLean RG; Ubico SR; Docherty DE; Hansen WR; Sileo L; McNamara TS
    Ann N Y Acad Sci; 2001 Dec; 951():54-7. PubMed ID: 11797804
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting West Nile virus transmission in North American bird communities using phylogenetic mixed effects models and eBird citizen science data.
    Kain MP; Bolker BM
    Parasit Vectors; 2019 Aug; 12(1):395. PubMed ID: 31395085
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Risk factors associated with West Nile virus mortality in American Crow populations in Southern Quebec.
    Ludwig A; Bigras-Poulin M; Michel P; Bélanger D
    J Wildl Dis; 2010 Jan; 46(1):195-208. PubMed ID: 20090033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Importance of bird-to-bird transmission for the establishment of West Nile virus.
    Hartemink NA; Davis SA; Reiter P; Hubálek Z; Heesterbeek JA
    Vector Borne Zoonotic Dis; 2007; 7(4):575-84. PubMed ID: 17979541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Focal amplification and suppression of West Nile virus transmission associated with communal bird roosts in northern Colorado.
    Komar N; Panella NA; Burkhalter KL
    J Vector Ecol; 2018 Dec; 43(2):220-234. PubMed ID: 30408295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bird species potentially involved in introduction, amplification, and spread of West Nile virus in a Mediterranean wetland, the Camargue (Southern France).
    Jourdain E; Toussaint Y; Leblond A; Bicout DJ; Sabatier P; Gauthier-Clerc M
    Vector Borne Zoonotic Dis; 2007; 7(1):15-33. PubMed ID: 17417954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. West Nile virus infection in American Robins: new insights on dose response.
    VanDalen KK; Hall JS; Clark L; McLean RG; Smeraski C
    PLoS One; 2013; 8(7):e68537. PubMed ID: 23844218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [West Nile virus. Prevalence and significance as a zoonotic pathogen].
    Pauli G
    Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz; 2004 Jul; 47(7):653-60. PubMed ID: 15254820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Implications of spatial patterns of roosting and movements of American robins for West Nile virus transmission.
    Benson TJ; Ward MP; Lampman RL; Raim A; Weatherhead PJ
    Vector Borne Zoonotic Dis; 2012 Oct; 12(10):877-85. PubMed ID: 22651391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Factors associated with the risk of West Nile virus among crows in New York State.
    DeCarlo CH; Clark AB; McGowan KJ; Ziegler PE; Glaser AL; Szonyi B; Mohammed HO
    Zoonoses Public Health; 2011 Jun; 58(4):270-5. PubMed ID: 20707862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluid Spatial Dynamics of West Nile Virus in the United States: Rapid Spread in a Permissive Host Environment.
    Di Giallonardo F; Geoghegan JL; Docherty DE; McLean RG; Zody MC; Qu J; Yang X; Birren BW; Malboeuf CM; Newman RM; Ip HS; Holmes EC
    J Virol; 2016 Jan; 90(2):862-72. PubMed ID: 26512086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of a degree-day model of West Nile virus transmission risk to the East Coast of the United States of America.
    Konrad SK; Miller SN
    Geospat Health; 2012 Nov; 7(1):15-20. PubMed ID: 23242676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. West Nile virus epidemics in North America are driven by shifts in mosquito feeding behavior.
    Kilpatrick AM; Kramer LD; Jones MJ; Marra PP; Daszak P
    PLoS Biol; 2006 Apr; 4(4):e82. PubMed ID: 16494532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Avian species diversity and transmission of West Nile virus in Atlanta, Georgia.
    Levine RS; Hedeen DL; Hedeen MW; Hamer GL; Mead DG; Kitron UD
    Parasit Vectors; 2017 Feb; 10(1):62. PubMed ID: 28159002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crow deaths caused by West Nile virus during winter.
    Dawson JR; Stone WB; Ebel GD; Young DS; Galinski DS; Pensabene JP; Franke MA; Eidson M; Kramer LD
    Emerg Infect Dis; 2007 Dec; 13(12):1912-4. PubMed ID: 18258045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Does the roosting behavior of birds affect transmission dynamics of West Nile virus?
    Ward MP; Raim A; Yaremych-Hamer S; Lampman R; Novak RJ
    Am J Trop Med Hyg; 2006 Aug; 75(2):350-5. PubMed ID: 16896147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overwintering of West Nile virus in a bird community with a communal crow roost.
    Montecino-Latorre D; Barker CM
    Sci Rep; 2018 Apr; 8(1):6088. PubMed ID: 29666401
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.