These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 27106173)

  • 1. A forward-muscular inverse-skeletal dynamics framework for human musculoskeletal simulations.
    S Shourijeh M; Smale KB; Potvin BM; Benoit DL
    J Biomech; 2016 Jun; 49(9):1718-1723. PubMed ID: 27106173
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A fair and EMG-validated comparison of recruitment criteria, musculotendon models and muscle coordination strategies, for the inverse-dynamics based optimization of muscle forces during gait.
    Michaud F; Lamas M; Lugrís U; Cuadrado J
    J Neuroeng Rehabil; 2021 Jan; 18(1):17. PubMed ID: 33509205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Full-Body Musculoskeletal Model for Muscle-Driven Simulation of Human Gait.
    Rajagopal A; Dembia CL; DeMers MS; Delp DD; Hicks JL; Delp SL
    IEEE Trans Biomed Eng; 2016 Oct; 63(10):2068-79. PubMed ID: 27392337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Are subject-specific musculoskeletal models robust to the uncertainties in parameter identification?
    Valente G; Pitto L; Testi D; Seth A; Delp SL; Stagni R; Viceconti M; Taddei F
    PLoS One; 2014; 9(11):e112625. PubMed ID: 25390896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of muscle forces in gait using a simulation of the electromyographic activity and numerical optimization.
    Ravera EP; Crespo MJ; Braidot AA
    Comput Methods Biomech Biomed Engin; 2016; 19(1):1-12. PubMed ID: 25408069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards a realistic biomechanical model of the thumb: the choice of kinematic description may be more critical than the solution method or the variability/uncertainty of musculoskeletal parameters.
    Valero-Cuevas FJ; Johanson ME; Towles JD
    J Biomech; 2003 Jul; 36(7):1019-30. PubMed ID: 12757811
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electromyogram refinement using muscle synergy based regulation of uncertain information.
    Min K; Shin D; Lee J; Kakei S
    J Biomech; 2018 Apr; 72():125-133. PubMed ID: 29609801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Static and dynamic optimization solutions for gait are practically equivalent.
    Anderson FC; Pandy MG
    J Biomech; 2001 Feb; 34(2):153-61. PubMed ID: 11165278
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybrid neuromusculoskeletal modeling to best track joint moments using a balance between muscle excitations derived from electromyograms and optimization.
    Sartori M; Farina D; Lloyd DG
    J Biomech; 2014 Nov; 47(15):3613-21. PubMed ID: 25458151
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Muscle-driven forward dynamics simulation for the study of differences in muscle function during stair ascent and descent.
    Selk Ghafari A; Meghdari A; Vossoughi GR
    Proc Inst Mech Eng H; 2009 Oct; 223(7):863-74. PubMed ID: 19908425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of perturbing body segment parameters on calculated joint moments and muscle forces during gait.
    Wesseling M; de Groote F; Jonkers I
    J Biomech; 2014 Jan; 47(2):596-601. PubMed ID: 24332615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Feedback control of the neuromusculoskeletal system in a forward dynamics simulation of stair locomotion.
    Selk Ghafari A; Meghdari A; Vossoughi G
    Proc Inst Mech Eng H; 2009 Aug; 223(6):663-75. PubMed ID: 19743633
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensitivity of predicted muscle forces during gait to anatomical variability in musculotendon geometry.
    Bosmans L; Valente G; Wesseling M; Van Campen A; De Groote F; De Schutter J; Jonkers I
    J Biomech; 2015 Jul; 48(10):2116-23. PubMed ID: 25979383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic motion planning of 3D human locomotion using gradient-based optimization.
    Kim HJ; Wang Q; Rahmatalla S; Swan CC; Arora JS; Abdel-Malek K; Assouline JG
    J Biomech Eng; 2008 Jun; 130(3):031002. PubMed ID: 18532851
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A probabilistic approach to quantify the impact of uncertainty propagation in musculoskeletal simulations.
    Myers CA; Laz PJ; Shelburne KB; Davidson BS
    Ann Biomed Eng; 2015 May; 43(5):1098-111. PubMed ID: 25404535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An EMG-to-force processing approach for determining ankle muscle forces during normal human gait.
    Bogey RA; Perry J; Gitter AJ
    IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):302-10. PubMed ID: 16200754
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using computed muscle control to generate forward dynamic simulations of human walking from experimental data.
    Thelen DG; Anderson FC
    J Biomech; 2006; 39(6):1107-15. PubMed ID: 16023125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A two-muscle, continuum-mechanical forward simulation of the upper limb.
    Röhrle O; Sprenger M; Schmitt S
    Biomech Model Mechanobiol; 2017 Jun; 16(3):743-762. PubMed ID: 27837360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of body weight support variation on muscle activities during robot assisted gait: a dynamic simulation study.
    Hussain S; Jamwal PK; Ghayesh MH
    Comput Methods Biomech Biomed Engin; 2017 May; 20(6):626-635. PubMed ID: 28349768
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting muscle forces in gait from EMG signals and musculotendon kinematics.
    White SC; Winter DA
    J Electromyogr Kinesiol; 1992; 2(4):217-31. PubMed ID: 20719615
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.