BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 27106284)

  • 1. Direct Synthesis of Highly Substituted Pyrroles and Dihydropyrroles Using Linear Selective Hydroacylation Reactions.
    Majhail MK; Ylioja PM; Willis MC
    Chemistry; 2016 Jun; 22(23):7879-84. PubMed ID: 27106284
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diverse saturated heterocycles from a hydroacylation/conjugate addition cascade.
    Iwumene NUN; Moseley DF; Pullin RDC; Willis MC
    Chem Sci; 2022 Feb; 13(5):1504-1511. PubMed ID: 35222935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Azine-N-oxides as effective controlling groups for Rh-catalysed intermolecular alkyne hydroacylation.
    Moseley DF; Kalepu J; Willis MC
    Chem Sci; 2021 Oct; 12(39):13068-13073. PubMed ID: 34745537
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intermolecular hydroacylation: high activity rhodium catalysts containing small-bite-angle diphosphine ligands.
    Chaplin AB; Hooper JF; Weller AS; Willis MC
    J Am Chem Soc; 2012 Mar; 134(10):4885-97. PubMed ID: 22324763
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Traceless Rhodium-Catalyzed Hydroacylation Using Alkyl Aldehydes: The Enantioselective Synthesis of β-Aryl Ketones.
    Bouisseau A; Gao M; Willis MC
    Chemistry; 2016 Oct; 22(44):15624-15628. PubMed ID: 27666437
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploiting Carbonyl Groups to Control Intermolecular Rhodium-Catalyzed Alkene and Alkyne Hydroacylation.
    Coxon TJ; Fernández M; Barwick-Silk J; McKay AI; Britton LE; Weller AS; Willis MC
    J Am Chem Soc; 2017 Jul; 139(29):10142-10149. PubMed ID: 28715214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rhodium-catalyzed sequential allylic amination and olefin hydroacylation reactions: enantioselective synthesis of seven-membered nitrogen heterocycles.
    Arnold JS; Mwenda ET; Nguyen HM
    Angew Chem Int Ed Engl; 2014 Apr; 53(14):3688-92. PubMed ID: 24591294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Substrate-directed hydroacylation: rhodium-catalyzed coupling of vinylphenols and nonchelating aldehydes.
    Murphy SK; Bruch A; Dong VM
    Angew Chem Int Ed Engl; 2014 Feb; 53(9):2455-9. PubMed ID: 24478146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enantioselective Three-Component Assembly of β'-Aryl Enones Using a Rhodium-Catalyzed Alkyne Hydroacylation/Aryl Boronic Acid Conjugate Addition Sequence.
    Gao M; Willis MC
    Org Lett; 2017 May; 19(10):2734-2737. PubMed ID: 28485946
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intermolecular alkene and alkyne hydroacylation with beta-S-substituted aldehydes: mechanistic insight into the role of a hemilabile P-O-P ligand.
    Moxham GL; Randell-Sly H; Brayshaw SK; Weller AS; Willis MC
    Chemistry; 2008; 14(27):8383-97. PubMed ID: 18666296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequential catalysis: exploiting a single rhodium(i) catalyst to promote an alkyne hydroacylation-aryl boronic acid conjugate addition sequence.
    Fernández M; Castaing M; Willis MC
    Chem Sci; 2017 Jan; 8(1):536-540. PubMed ID: 28451201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rhodium-catalysed hydroacylation or reductive aldol reactions: a ligand dependent switch of reactivity.
    Osborne JD; Willis MC
    Chem Commun (Camb); 2008 Oct; (40):5025-7. PubMed ID: 18931774
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chelation-controlled intermolecular alkene and alkyne hydroacylation: the utility of beta-thioacetal aldehydes.
    Willis MC; Randell-Sly HE; Woodward RL; Currie GS
    Org Lett; 2005 May; 7(11):2249-51. PubMed ID: 15901181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rhodium-catalysed linear-selective alkyne hydroacylation.
    Poingdestre SJ; Goodacre JD; Weller AS; Willis MC
    Chem Commun (Camb); 2012 May; ():. PubMed ID: 22618331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rhodium-catalyzed intermolecular chelation controlled alkene and alkyne hydroacylation: synthetic scope of beta-S-substituted aldehyde substrates.
    Willis MC; Randell-Sly HE; Woodward RL; McNally SJ; Currie GS
    J Org Chem; 2006 Jul; 71(14):5291-7. PubMed ID: 16808518
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Teaching Aldehydes New Tricks Using Rhodium- and Cobalt-Hydride Catalysis.
    Davison RT; Kuker EL; Dong VM
    Acc Chem Res; 2021 Mar; 54(5):1236-1250. PubMed ID: 33533586
    [TBL] [Abstract][Full Text] [Related]  

  • 17. α-Amidoaldehydes as Substrates in Rhodium-Catalyzed Intermolecular Alkyne Hydroacylation: The Synthesis of α-Amidoketones.
    Pal R; O'Brien SC; Willis MC
    Chemistry; 2020 Sep; 26(51):11710-11714. PubMed ID: 32449532
    [TBL] [Abstract][Full Text] [Related]  

  • 18. α-Amino Aldehydes as Readily Available Chiral Aldehydes for Rh-Catalyzed Alkyne Hydroacylation.
    Hooper JF; Seo S; Truscott FR; Neuhaus JD; Willis MC
    J Am Chem Soc; 2016 Feb; 138(5):1630-4. PubMed ID: 26771104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic, Enantioselective Synthesis of Polycyclic Nitrogen, Oxygen, and Sulfur Heterocycles via Rh-Catalyzed Alkene Hydroacylation.
    Vickerman KL; Stanley LM
    Org Lett; 2017 Oct; 19(19):5054-5057. PubMed ID: 28933168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of four-component synthesis of tetra- and pentasubstituted polyfunctional dihydropyrroles: free permutation and combination of aromatic and aliphatic amines.
    Lv L; Zheng S; Cai X; Chen Z; Zhu Q; Liu S
    ACS Comb Sci; 2013 Apr; 15(4):183-92. PubMed ID: 23425098
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.