These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

607 related articles for article (PubMed ID: 27106298)

  • 1. Cause-effect relationship between vocal fold physiology and voice production in a three-dimensional phonation model.
    Zhang Z
    J Acoust Soc Am; 2016 Apr; 139(4):1493. PubMed ID: 27106298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of glottal closure and airflow in a three-dimensional phonation model: implications for vocal intensity control.
    Zhang Z
    J Acoust Soc Am; 2015 Feb; 137(2):898-910. PubMed ID: 25698022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of vocal fold stiffness on voice production in a three-dimensional body-cover phonation model.
    Zhang Z
    J Acoust Soc Am; 2017 Oct; 142(4):2311. PubMed ID: 29092586
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A finite element study on the cause of vocal fold vertical stiffness variation.
    Geng B; Xue Q; Zheng X
    J Acoust Soc Am; 2017 Apr; 141(4):EL351. PubMed ID: 28464635
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Indirect assessment of the contribution of subglottal air pressure and vocal-fold tension to changes of fundamental frequency in English.
    Monsen RB; Engebretson AM; Vemula NR
    J Acoust Soc Am; 1978 Jul; 64(1):65-80. PubMed ID: 712003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vocal fold contact pressure in a three-dimensional body-cover phonation model.
    Zhang Z
    J Acoust Soc Am; 2019 Jul; 146(1):256. PubMed ID: 31370600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acoustic and perceptual effects of changes in body layer stiffness in symmetric and asymmetric vocal fold models.
    Zhang Z; Kreiman J; Gerratt BR; Garellek M
    J Acoust Soc Am; 2013 Jan; 133(1):453-62. PubMed ID: 23297917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Effect of Vocal Fold Inferior Surface Hypertrophy on Voice Function in Excised Canine Larynges.
    Wang R; Bao H; Xu X; Piotrowski D; Zhang Y; Zhuang P
    J Voice; 2018 Jul; 32(4):396-402. PubMed ID: 28826980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of vocal fold vertical stiffness variation on voice production.
    Geng B; Xue Q; Zheng X
    J Acoust Soc Am; 2016 Oct; 140(4):2856. PubMed ID: 27794296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Voice production in a MRI-based subject-specific vocal fold model with parametrically controlled medial surface shape.
    Wu L; Zhang Z
    J Acoust Soc Am; 2019 Dec; 146(6):4190. PubMed ID: 31893687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relationship of Various Open Quotients With Acoustic Property, Phonation Types, Fundamental Frequency, and Intensity.
    Yokonishi H; Imagawa H; Sakakibara K; Yamauchi A; Nito T; Yamasoba T; Tayama N
    J Voice; 2016 Mar; 30(2):145-57. PubMed ID: 25953586
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational Study of the Impact of Dehydration-Induced Vocal Fold Stiffness Changes on Voice Production.
    Wu L; Zhang Z
    J Voice; 2024 Jul; 38(4):836-843. PubMed ID: 35260287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A theoretical study of the effects of various laryngeal configurations on the acoustics of phonation.
    Titze IR; Talkin DT
    J Acoust Soc Am; 1979 Jul; 66(1):60-74. PubMed ID: 489833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrative Insights into the Myoelastic-Aerodynamic Theory and Acoustics of Phonation. Scientific Tribute to Donald G. Miller.
    Švec JG; Schutte HK; Chen CJ; Titze IR
    J Voice; 2023 May; 37(3):305-313. PubMed ID: 33744068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A case report in changes in phonatory physiology following voice therapy: application of high-speed imaging.
    Patel RR; Pickering J; Stemple J; Donohue KD
    J Voice; 2012 Nov; 26(6):734-41. PubMed ID: 22717492
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A quantitative study of the medial surface dynamics of an in vivo canine vocal fold during phonation.
    Doellinger M; Berry DA; Berke GS
    Laryngoscope; 2005 Sep; 115(9):1646-54. PubMed ID: 16148711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of the Driving Force During the Normal Vocal Fold Vibration Cycle.
    DeJonckere PH; Lebacq J; Titze IR
    J Voice; 2017 Nov; 31(6):649-661. PubMed ID: 28495329
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Voice Signals Produced With Jitter Through a Stochastic One-mass Mechanical Model.
    Cataldo E; Soize C
    J Voice; 2017 Jan; 31(1):111.e9-111.e18. PubMed ID: 26898394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vocal instabilities in a three-dimensional body-cover phonation model.
    Zhang Z
    J Acoust Soc Am; 2018 Sep; 144(3):1216. PubMed ID: 30424612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A lumped mucosal wave model of the vocal folds revisited: recent extensions and oscillation hysteresis.
    Lucero JC; Koenig LL; Lourenço KG; Ruty N; Pelorson X
    J Acoust Soc Am; 2011 Mar; 129(3):1568-79. PubMed ID: 21428520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.