These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 27106301)

  • 21. Simulations of photoacoustic wave propagation using a finite-difference time-domain method with Berenger's perfectly matched layers.
    Sheu YL; Li PC
    J Acoust Soc Am; 2008 Dec; 124(6):3471-80. PubMed ID: 19206776
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Finite-difference time-domain solution of light scattering by dielectric particles with a perfectly matched layer absorbing boundary condition.
    Sun W; Fu Q; Chen Z
    Appl Opt; 1999 May; 38(15):3141-51. PubMed ID: 18319902
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Adaptive finite-element method for diffraction gratings.
    Bao G; Chen Z; Wu H
    J Opt Soc Am A Opt Image Sci Vis; 2005 Jun; 22(6):1106-14. PubMed ID: 15984483
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Yee-mesh-based finite difference eigenmode solver with PML absorbing boundary conditions for optical waveguides and photonic crystal fibers.
    Yu CP; Chang HC
    Opt Express; 2004 Dec; 12(25):6165-77. PubMed ID: 19488261
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Impedance-matched absorbers for finite-difference parabolic equation algorithms.
    Yevick D; Thomson DJ
    J Acoust Soc Am; 2000 Mar; 107(3):1226-34. PubMed ID: 10738779
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An Absorbing Boundary Condition for the Lattice Boltzmann Method Based on the Perfectly Matched Layer.
    Najafi-Yazdi A; Mongeau L
    Comput Fluids; 2012 Sep; 68():203-218. PubMed ID: 23526050
    [TBL] [Abstract][Full Text] [Related]  

  • 27. On the perfectly matched layer and the DB boundary condition.
    Tedeschi N; Frezza F; Sihvola A
    J Opt Soc Am A Opt Image Sci Vis; 2013 Oct; 30(10):1941-6. PubMed ID: 24322848
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Finite difference time domain methods for piezoelectric crystals.
    Chagla F; Smith PM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Oct; 53(10):1895-901. PubMed ID: 17036798
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A computationally efficient finite element model with perfectly matched layers applied to scattering from axially symmetric objects.
    Zampolli M; Tesei A; Jensen FB; Malm N; Blottman JB
    J Acoust Soc Am; 2007 Sep; 122(3):1472. PubMed ID: 17927408
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Propagation characteristics of interface waves between a porous medium and a sediment-containing two-phase fluid.
    Han Q; Qi L; Shan M; Yin C; Jiang X; Zhu C
    Ultrasonics; 2017 Nov; 81():73-80. PubMed ID: 28595165
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A nodal discontinuous Galerkin finite element method for nonlinear elastic wave propagation.
    Bou Matar O; Guerder PY; Li Y; Vandewoestyne B; Van Den Abeele K
    J Acoust Soc Am; 2012 May; 131(5):3650-63. PubMed ID: 22559342
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Simulation of ultrasonic wave propagation in anisotropic poroelastic bone plate using hybrid spectral/finite element method.
    Nguyen VH; Naili S
    Int J Numer Method Biomed Eng; 2012 Aug; 28(8):861-76. PubMed ID: 25099567
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Full-wave simulation of optical waveguides via truncation in the method of moments using PML absorbing boundary conditions.
    Karagounis G; De Zutter D; Vande Ginste D
    Opt Express; 2016 Dec; 24(25):28326-28336. PubMed ID: 27958543
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Memory cost of absorbing conditions for the finite-difference time-domain method.
    Chobeau P; Savioja L
    J Acoust Soc Am; 2016 Jul; 140(1):EL119. PubMed ID: 27475200
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Contribution of leaky modes in the modal analysis of unbounded problems with perfectly matched layers.
    Gallezot M; Treyssède F; Laguerre L
    J Acoust Soc Am; 2017 Jan; 141(1):EL16. PubMed ID: 28147629
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A coupled SAFE-2.5D BEM approach for the dispersion analysis of damped leaky guided waves in embedded waveguides of arbitrary cross-section.
    Mazzotti M; Bartoli I; Marzani A; Viola E
    Ultrasonics; 2013 Sep; 53(7):1227-41. PubMed ID: 23642317
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Perfectly matched layer for biaxial hyperbolic materials.
    Ge Z; Tao S; Chen H
    Opt Express; 2023 Feb; 31(4):6965-6973. PubMed ID: 36823942
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Unified perfectly matched layer for finite-difference time-domain modeling of dispersive optical materials.
    Udagedara I; Premaratne M; Rukhlenko ID; Hattori HT; Agrawal GP
    Opt Express; 2009 Nov; 17(23):21179-90. PubMed ID: 19997357
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Absorbing boundary conditions for low group velocity electromagnetic waves in photonic crystals.
    Askari M; Momeni B; Reinke CM; Adibi A
    Appl Opt; 2011 Mar; 50(9):1266-71. PubMed ID: 21460998
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A coupled modal-finite element method for the wave propagation modeling in irregular open waveguides.
    Pelat A; Felix S; Pagneux V
    J Acoust Soc Am; 2011 Mar; 129(3):1240-9. PubMed ID: 21428487
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.