These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 27106305)

  • 1. Long-range propagation of nonlinear infrasound waves through an absorbing atmosphere.
    de Groot-Hedlin CD
    J Acoust Soc Am; 2016 Apr; 139(4):1565. PubMed ID: 27106305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A study of infrasound propagation based on high-order finite difference solutions of the Navier-Stokes equations.
    Marsden O; Bogey C; Bailly C
    J Acoust Soc Am; 2014 Mar; 135(3):1083-95. PubMed ID: 24606252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonlinear synthesis of infrasound propagation through an inhomogeneous, absorbing atmosphere.
    de Groot-Hedlin CD
    J Acoust Soc Am; 2012 Aug; 132(2):646-56. PubMed ID: 22894187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Infrasound propagation in tropospheric ducts and acoustic shadow zones.
    de Groot-Hedlin CD
    J Acoust Soc Am; 2017 Oct; 142(4):1816. PubMed ID: 29092616
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A numerical study of nonlinear infrasound propagation in a windy atmosphere.
    Sabatini R; Marsden O; Bailly C; Bogey C
    J Acoust Soc Am; 2016 Jul; 140(1):641. PubMed ID: 27475186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finite-difference time-domain synthesis of infrasound propagation through an absorbing atmosphere.
    de Groot-Hedlin C
    J Acoust Soc Am; 2008 Sep; 124(3):1430-41. PubMed ID: 19045635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characteristics of thermospheric infrasound predicted using ray tracing and weakly non-linear waveform analyses.
    Blom P; Waxler R
    J Acoust Soc Am; 2021 May; 149(5):3174. PubMed ID: 34241148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling propagation of infrasound signals observed by a dense seismic network.
    Chunchuzov I; Kulichkov S; Popov O; Hedlin M
    J Acoust Soc Am; 2014 Jan; 135(1):38-48. PubMed ID: 24437743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Infrasonic attenuation in the upper mesosphere-lower thermosphere: a comparison between Navier-Stokes and Burnett predictions.
    Akintunde A; Petculescu A
    J Acoust Soc Am; 2014 Oct; 136(4):1483-6. PubMed ID: 25324050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probabilistic inversion for submerged source depth and strength from infrasound observations.
    Averbuch G; Waxler RM; Smets PSM; Evers LG
    J Acoust Soc Am; 2020 Feb; 147(2):1066. PubMed ID: 32113259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-dimensional finite-difference time-domain formulation for sound propagation in a temperature-dependent elastomer-fluid medium.
    Huang Y; Hou H; Oterkus S; Wei Z; Gao N
    J Acoust Soc Am; 2020 Jan; 147(1):428. PubMed ID: 32007005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of nonlinear ultrasound propagation on high intensity brain therapy.
    Pinton G; Aubry JF; Fink M; Tanter M
    Med Phys; 2011 Mar; 38(3):1207-16. PubMed ID: 21520833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rich observations of local and regional infrasound phases made by the AlpArray seismic network after refinery explosion.
    Fuchs F; Schneider FM; Kolínský P; Serafin S; Bokelmann G
    Sci Rep; 2019 Sep; 9(1):13027. PubMed ID: 31506593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An investigation of infrasound propagation over mountain ranges.
    Damiens F; Millet C; Lott F
    J Acoust Soc Am; 2018 Jan; 143(1):563. PubMed ID: 29390737
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complex eigenrays algorithm for infrasound propagation in a windy range dependent atmosphere.
    Zelias A; Gainville O; Coulouvrat F
    J Acoust Soc Am; 2022 May; 151(5):3328. PubMed ID: 35649928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Equations for finite-difference, time-domain simulation of sound propagation in moving inhomogeneous media and numerical implementation.
    Ostashev VE; Wilson DK; Liu L; Aldridge DF; Symons NP; Marlin D
    J Acoust Soc Am; 2005 Feb; 117(2):503-17. PubMed ID: 15759672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonlinear parabolic equation model for finite-amplitude sound propagation over porous ground layers.
    Leissing T; Jean P; Defrance J; Soize C
    J Acoust Soc Am; 2009 Aug; 126(2):572-81. PubMed ID: 19640021
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-range atmospheric infrasound propagation from subsurface sources.
    Averbuch G; Assink JD; Evers LG
    J Acoust Soc Am; 2020 Feb; 147(2):1264. PubMed ID: 32113287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulations of optoacoustic wave propagation in light-absorbing media using a finite-difference time-domain method.
    Huang DH; Liao CK; Wei CW; Li PC
    J Acoust Soc Am; 2005 May; 117(5):2795-801. PubMed ID: 15957750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation of acoustic wave propagation in dispersive media with relaxation losses by using FDTD method with PML absorbing boundary condition.
    Yuan X; Borup D; Wiskin J; Berggren M; Johnson SA
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(1):14-23. PubMed ID: 18238394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.