These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 27106752)

  • 1. Skin stiffness determined from occlusion of a horizontally running microvessel in response to skin surface pressure: a finite element study of sacral pressure ulcers.
    Yamada H; Inoue Y; Shimokawa Y; Sakata K
    Med Biol Eng Comput; 2017 Jan; 55(1):79-88. PubMed ID: 27106752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Linking microvascular collapse to tissue hypoxia in a multiscale model of pressure ulcer initiation.
    Sree VD; Rausch MK; Tepole AB
    Biomech Model Mechanobiol; 2019 Dec; 18(6):1947-1964. PubMed ID: 31203488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental and computational analysis of soft tissue stiffness in forearm using a manual indentation device.
    Iivarinen JT; Korhonen RK; Julkunen P; Jurvelin JS
    Med Eng Phys; 2011 Dec; 33(10):1245-53. PubMed ID: 21696992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering the perfect mattress: The influence of substrate mechanics on deep tissue stresses in supine.
    Rayward L; Pearcy M; Kerr G; Pivonka P; Little JP
    Clin Biomech (Bristol, Avon); 2023 Dec; 110():106130. PubMed ID: 37897845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Material properties in unconfined compression of gelatin hydrogel for skin tissue engineering applications.
    Karimi A; Navidbakhsh M
    Biomed Tech (Berl); 2014 Dec; 59(6):479-86. PubMed ID: 24988278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomechanical modeling to prevent ischial pressure ulcers.
    Luboz V; Petrizelli M; Bucki M; Diot B; Vuillerme N; Payan Y
    J Biomech; 2014 Jul; 47(10):2231-6. PubMed ID: 24873863
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of mechanical conditions in sub-dermal tissues during sitting: a combined experimental-MRI and finite element approach.
    Linder-Ganz E; Shabshin N; Itzchak Y; Gefen A
    J Biomech; 2007; 40(7):1443-54. PubMed ID: 16920122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measuring the quasi-static Young's modulus of the eardrum using an indentation technique.
    Hesabgar SM; Marshall H; Agrawal SK; Samani A; Ladak HM
    Hear Res; 2010 May; 263(1-2):168-76. PubMed ID: 20146934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechano-acoustic determination of Young's modulus of articular cartilage.
    Saarakkala S; Korhonen RK; Laasanen MS; Töyräs J; Rieppo J; Jurvelin JS
    Biorheology; 2004; 41(3-4):167-79. PubMed ID: 15299250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A biomechanical breast model evaluated with respect to MRI data collected in three different positions.
    Mîra A; Carton AK; Muller S; Payan Y
    Clin Biomech (Bristol, Avon); 2018 Dec; 60():191-199. PubMed ID: 30408760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methods for reducing peak pressure in laparoscopic grasping.
    Bos J; Doornebosch EW; Engbers JG; Nyhuis O; Dodou D
    Proc Inst Mech Eng H; 2013 Dec; 227(12):1292-300. PubMed ID: 24043225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bone geometry on the contact stress in the shoulder for evaluation of pressure ulcers: finite element modeling and experimental validation.
    Luo Y; Wang Y; Tai BL; Chen RK; Shih AJ
    Med Eng Phys; 2015 Feb; 37(2):187-94. PubMed ID: 25575962
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An atomic finite element model for biodegradable polymers. Part 2. A model for change in Young's modulus due to polymer chain scission.
    Gleadall A; Pan J; Kruft MA
    J Mech Behav Biomed Mater; 2015 Nov; 51():237-47. PubMed ID: 26275486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measuring the transverse Young's modulus of maize rind and pith tissues.
    Stubbs CJ; Sun W; Cook DD
    J Biomech; 2019 Feb; 84():113-120. PubMed ID: 30635117
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The relationship between the Young's modulus of the stratum corneum and age: a pilot study.
    Hara Y; Masuda Y; Hirao T; Yoshikawa N
    Skin Res Technol; 2013 Aug; 19(3):339-45. PubMed ID: 23551131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intrinsic mechanical properties of trabecular calcaneus determined by finite-element models using 3D synchrotron microtomography.
    Follet H; Peyrin F; Vidal-Salle E; Bonnassie A; Rumelhart C; Meunier PJ
    J Biomech; 2007; 40(10):2174-83. PubMed ID: 17196599
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of cell Young's modulus of adherent cells probed by optical and magnetic tweezers: influence of cell thickness and bead immersion.
    Kamgoué A; Ohayon J; Tracqui P
    J Biomech Eng; 2007 Aug; 129(4):523-30. PubMed ID: 17655473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Risk factors for developing heel ulcers for bedridden patients: A finite element study.
    van Zwam WGH; van Turnhout MC; Oomens CWJ
    Clin Biomech (Bristol, Avon); 2020 Aug; 78():105094. PubMed ID: 32619872
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The apparent increase of the Young's modulus in thin cement layers.
    De Jager N; Pallav P; Feilzer AJ
    Dent Mater; 2004 Jun; 20(5):457-62. PubMed ID: 15081552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A DFT-based finite element approach for studying elastic properties, buckling and vibration of the arsenene.
    Aghdasi P; Ansari R; Rouhi S; Yousefi S
    J Mol Graph Model; 2020 Dec; 101():107725. PubMed ID: 32911118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.