BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 27106806)

  • 1. Nuclear receptors and AMPK: can exercise mimetics cure diabetes?
    Wall CE; Yu RT; Atkins AR; Downes M; Evans RM
    J Mol Endocrinol; 2016 Jul; 57(1):R49-58. PubMed ID: 27106806
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The diabetes medication canagliflozin promotes mitochondrial remodelling of adipocyte via the AMPK-Sirt1-Pgc-1α signalling pathway.
    Yang X; Liu Q; Li Y; Tang Q; Wu T; Chen L; Pu S; Zhao Y; Zhang G; Huang C; Zhang J; Zhang Z; Huang Y; Zou M; Shi X; Jiang W; Wang R; He J
    Adipocyte; 2020 Dec; 9(1):484-494. PubMed ID: 32835596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of resveratrol in patients with type 2 diabetes mellitus on skeletal muscle SIRT1 expression and energy expenditure.
    Goh KP; Lee HY; Lau DP; Supaat W; Chan YH; Koh AF
    Int J Sport Nutr Exerc Metab; 2014 Feb; 24(1):2-13. PubMed ID: 23918588
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brain-Derived Neurotrophic Factor Improves Impaired Fatty Acid Oxidation Via the Activation of Adenosine Monophosphate-Activated Protein Kinase-ɑ - Proliferator-Activated Receptor-r Coactivator-1ɑ Signaling in Skeletal Muscle of Mice With Heart Failure.
    Matsumoto J; Takada S; Furihata T; Nambu H; Kakutani N; Maekawa S; Mizushima W; Nakano I; Fukushima A; Yokota T; Tanaka S; Handa H; Sabe H; Kinugawa S
    Circ Heart Fail; 2021 Jan; 14(1):e005890. PubMed ID: 33356364
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atractylenolide III Enhances Energy Metabolism by Increasing the SIRT-1 and PGC1α Expression with AMPK Phosphorylation in C2C12 Mouse Skeletal Muscle Cells.
    Song MY; Jung HW; Kang SY; Park YK
    Biol Pharm Bull; 2017; 40(3):339-344. PubMed ID: 28250276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resveratrol and SRT1720 Elicit Differential Effects in Metabolic Organs and Modulate Systemic Parameters Independently of Skeletal Muscle Peroxisome Proliferator-activated Receptor γ Co-activator 1α (PGC-1α).
    Svensson K; Schnyder S; Albert V; Cardel B; Quagliata L; Terracciano LM; Handschin C
    J Biol Chem; 2015 Jun; 290(26):16059-76. PubMed ID: 25987562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glycogen content regulates peroxisome proliferator activated receptor-∂ (PPAR-∂) activity in rat skeletal muscle.
    Philp A; MacKenzie MG; Belew MY; Towler MC; Corstorphine A; Papalamprou A; Hardie DG; Baar K
    PLoS One; 2013; 8(10):e77200. PubMed ID: 24146969
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Skeletal muscle and nuclear hormone receptors: implications for cardiovascular and metabolic disease.
    Smith AG; Muscat GE
    Int J Biochem Cell Biol; 2005 Oct; 37(10):2047-63. PubMed ID: 15922648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy-sensing factors coactivator peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α) and AMP-activated protein kinase control expression of inflammatory mediators in liver: induction of interleukin 1 receptor antagonist.
    Buler M; Aatsinki SM; Skoumal R; Komka Z; Tóth M; Kerkelä R; Georgiadi A; Kersten S; Hakkola J
    J Biol Chem; 2012 Jan; 287(3):1847-60. PubMed ID: 22117073
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Celastrol attenuates oxidative stress in the skeletal muscle of diabetic rats by regulating the AMPK-PGC1α-SIRT3 signaling pathway.
    Guan Y; Cui ZJ; Sun B; Han LP; Li CJ; Chen LM
    Int J Mol Med; 2016 May; 37(5):1229-38. PubMed ID: 27049825
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Importance of Fatty Acids as Nutrients during Post-Exercise Recovery.
    Lundsgaard AM; Fritzen AM; Kiens B
    Nutrients; 2020 Jan; 12(2):. PubMed ID: 31973165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fibroblast growth factor 21 increases hepatic oxidative capacity but not physical activity or energy expenditure in hepatic peroxisome proliferator-activated receptor γ coactivator-1α-deficient mice.
    Fletcher JA; Linden MA; Sheldon RD; Meers GM; Morris EM; Butterfield A; Perfield JW; Rector RS; Thyfault JP
    Exp Physiol; 2018 Mar; 103(3):408-418. PubMed ID: 29215172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pharmacological AMPK activation induces transcriptional responses congruent to exercise in skeletal and cardiac muscle, adipose tissues and liver.
    Muise ES; Guan HP; Liu J; Nawrocki AR; Yang X; Wang C; Rodríguez CG; Zhou D; Gorski JN; Kurtz MM; Feng D; Leavitt KJ; Wei L; Wilkening RR; Apgar JM; Xu S; Lu K; Feng W; Li Y; He H; Previs SF; Shen X; van Heek M; Souza SC; Rosenbach MJ; Biftu T; Erion MD; Kelley DE; Kemp DM; Myers RW; Sebhat IK
    PLoS One; 2019; 14(2):e0211568. PubMed ID: 30811418
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nuclear receptors and nonalcoholic fatty liver disease.
    Cave MC; Clair HB; Hardesty JE; Falkner KC; Feng W; Clark BJ; Sidey J; Shi H; Aqel BA; McClain CJ; Prough RA
    Biochim Biophys Acta; 2016 Sep; 1859(9):1083-1099. PubMed ID: 26962021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. METRNL attenuates lipid-induced inflammation and insulin resistance via AMPK or PPARδ-dependent pathways in skeletal muscle of mice.
    Jung TW; Lee SH; Kim HC; Bang JS; Abd El-Aty AM; Hacımüftüoğlu A; Shin YK; Jeong JH
    Exp Mol Med; 2018 Sep; 50(9):1-11. PubMed ID: 30213948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SIRT6 regulates metabolic homeostasis in skeletal muscle through activation of AMPK.
    Cui X; Yao L; Yang X; Gao Y; Fang F; Zhang J; Wang Q; Chang Y
    Am J Physiol Endocrinol Metab; 2017 Oct; 313(4):E493-E505. PubMed ID: 28765271
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flavonoids extracted from mulberry (Morus alba L.) leaf improve skeletal muscle mitochondrial function by activating AMPK in type 2 diabetes.
    Meng Q; Qi X; Fu Y; Chen Q; Cheng P; Yu X; Sun X; Wu J; Li W; Zhang Q; Li Y; Wang A; Bian H
    J Ethnopharmacol; 2020 Feb; 248():112326. PubMed ID: 31639486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A review of the studies on food-derived factors which regulate energy metabolism via the modulation of lipid-sensing nuclear receptors.
    Goto T
    Biosci Biotechnol Biochem; 2019 Apr; 83(4):579-588. PubMed ID: 30572788
    [TBL] [Abstract][Full Text] [Related]  

  • 19. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity.
    Cantó C; Gerhart-Hines Z; Feige JN; Lagouge M; Noriega L; Milne JC; Elliott PJ; Puigserver P; Auwerx J
    Nature; 2009 Apr; 458(7241):1056-60. PubMed ID: 19262508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial biogenesis: pharmacological approaches.
    Valero T
    Curr Pharm Des; 2014; 20(35):5507-9. PubMed ID: 24606795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.