BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 27107127)

  • 1. Activation of an Otherwise Silent Xylose Metabolic Pathway in Shewanella oneidensis.
    Sekar R; Shin HD; DiChristina TJ
    Appl Environ Microbiol; 2016 Jul; 82(13):3996-4005. PubMed ID: 27107127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formate Metabolism in Shewanella oneidensis Generates Proton Motive Force and Prevents Growth without an Electron Acceptor.
    Kane AL; Brutinel ED; Joo H; Maysonet R; VanDrisse CM; Kotloski NJ; Gralnick JA
    J Bacteriol; 2016 Apr; 198(8):1337-46. PubMed ID: 26883823
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth Trade-Offs Accompany the Emergence of Glycolytic Metabolism in Shewanella oneidensis MR-1.
    Chubiz LM; Marx CJ
    J Bacteriol; 2017 Jun; 199(11):. PubMed ID: 28289083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shewanella oneidensis MR-1 Utilizes both Sodium- and Proton-Pumping NADH Dehydrogenases during Aerobic Growth.
    Duhl KL; Tefft NM; TerAvest MA
    Appl Environ Microbiol; 2018 Jun; 84(12):. PubMed ID: 29654176
    [No Abstract]   [Full Text] [Related]  

  • 5. Engineering
    Li F; Li Y; Sun L; Li X; Yin C; An X; Chen X; Tian Y; Song H
    Biotechnol Biofuels; 2017; 10():196. PubMed ID: 28804512
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthetic Klebsiella pneumoniae-Shewanella oneidensis Consortium Enables Glycerol-Fed High-Performance Microbial Fuel Cells.
    Li F; Yin C; Sun L; Li Y; Guo X; Song H
    Biotechnol J; 2018 May; 13(5):e1700491. PubMed ID: 29044893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic Characteristics of a Glucose-Utilizing Shewanella oneidensis Strain Grown under Electrode-Respiring Conditions.
    Nakagawa G; Kouzuma A; Hirose A; Kasai T; Yoshida G; Watanabe K
    PLoS One; 2015; 10(9):e0138813. PubMed ID: 26394222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical synthesis of formic acid from CO
    Le QAT; Kim HG; Kim YH
    Enzyme Microb Technol; 2018 Sep; 116():1-5. PubMed ID: 29887011
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High frequency of glucose-utilizing mutants in Shewanella oneidensis MR-1.
    Howard EC; Hamdan LJ; Lizewski SE; Ringeisen BR
    FEMS Microbiol Lett; 2012 Feb; 327(1):9-14. PubMed ID: 22092702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fnr (EtrA) acts as a fine-tuning regulator of anaerobic metabolism in Shewanella oneidensis MR-1.
    Cruz-García C; Murray AE; Rodrigues JL; Gralnick JA; McCue LA; Romine MF; Löffler FE; Tiedje JM
    BMC Microbiol; 2011 Mar; 11():64. PubMed ID: 21450087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anaerobic biodecolorization mechanism of methyl orange by Shewanella oneidensis MR-1.
    Cai PJ; Xiao X; He YR; Li WW; Chu J; Wu C; He MX; Zhang Z; Sheng GP; Lam MH; Xu F; Yu HQ
    Appl Microbiol Biotechnol; 2012 Feb; 93(4):1769-76. PubMed ID: 21808969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering a Native Inducible Expression System in Shewanella oneidensis to Control Extracellular Electron Transfer.
    West EA; Jain A; Gralnick JA
    ACS Synth Biol; 2017 Sep; 6(9):1627-1634. PubMed ID: 28562022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Urocanate reductase: identification of a novel anaerobic respiratory pathway in Shewanella oneidensis MR-1.
    Bogachev AV; Bertsova YV; Bloch DA; Verkhovsky MI
    Mol Microbiol; 2012 Dec; 86(6):1452-63. PubMed ID: 23078170
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A derivative of the menaquinone precursor 1,4-dihydroxy-2-naphthoate is involved in the reductive transformation of carbon tetrachloride by aerobically grown Shewanella oneidensis MR-1.
    Ward MJ; Fu QS; Rhoads KR; Yeung CH; Spormann AM; Criddle CS
    Appl Microbiol Biotechnol; 2004 Feb; 63(5):571-7. PubMed ID: 12908086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of Gene Expression in Shewanella oneidensis MR-1 during Electron Acceptor Limitation and Bacterial Nanowire Formation.
    Barchinger SE; Pirbadian S; Sambles C; Baker CS; Leung KM; Burroughs NJ; El-Naggar MY; Golbeck JH
    Appl Environ Microbiol; 2016 Sep; 82(17):5428-43. PubMed ID: 27342561
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Respiration and growth of Shewanella oneidensis MR-1 using vanadate as the sole electron acceptor.
    Carpentier W; De Smet L; Van Beeumen J; Brigé A
    J Bacteriol; 2005 May; 187(10):3293-301. PubMed ID: 15866913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthetic and Evolutionary Construction of a Chlorate-Reducing Shewanella oneidensis MR-1.
    Clark IC; Melnyk RA; Youngblut MD; Carlson HK; Iavarone AT; Coates JD
    mBio; 2015 May; 6(3):e00282-15. PubMed ID: 25991681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shewanella decolorationis LDS1 Chromate Resistance.
    Lemaire ON; Honoré FA; Tempel S; Fortier EM; Leimkühler S; Méjean V; Iobbi-Nivol C
    Appl Environ Microbiol; 2019 Sep; 85(18):. PubMed ID: 31300400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shewanella oneidensis MR-1 fluxome under various oxygen conditions.
    Tang YJ; Hwang JS; Wemmer DE; Keasling JD
    Appl Environ Microbiol; 2007 Feb; 73(3):718-29. PubMed ID: 17098921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of the BarA/UvrY two-component system in Shewanella oneidensis MR-1.
    Binnenkade L; Lassak J; Thormann KM
    PLoS One; 2011; 6(9):e23440. PubMed ID: 21931597
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.