BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 27107143)

  • 1. An enzymatic glucose/O2 biofuel cell operating in human blood.
    Cadet M; Gounel S; Stines-Chaumeil C; Brilland X; Rouhana J; Louerat F; Mano N
    Biosens Bioelectron; 2016 Sep; 83():60-7. PubMed ID: 27107143
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membraneless glucose/oxygen enzymatic fuel cells using redox hydrogel films containing carbon nanotubes.
    MacAodha D; Ó Conghaile P; Egan B; Kavanagh P; Leech D
    Chemphyschem; 2013 Jul; 14(10):2302-7. PubMed ID: 23788272
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Progress on implantable biofuel cell: Nano-carbon functionalization for enzyme immobilization enhancement.
    Babadi AA; Bagheri S; Hamid SB
    Biosens Bioelectron; 2016 May; 79():850-60. PubMed ID: 26785309
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of high performance bioanode based on fruitful association of dendrimer and carbon nanotube used for design O2/glucose membrane-less biofuel cell with improved bilirubine oxidase biocathode.
    Korani A; Salimi A
    Biosens Bioelectron; 2013 Dec; 50():186-93. PubMed ID: 23850787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 5,5-Dithiobis(2-nitrobenzoic acid) pyrene derivative-carbon nanotube electrodes for NADH electrooxidation and oriented immobilization of multicopper oxidases for the development of glucose/O
    Giroud F; Sawada K; Taya M; Cosnier S
    Biosens Bioelectron; 2017 Jan; 87():957-963. PubMed ID: 27665518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of an Os Complex-Modified Hydrogel with Optimized Redox Potential for Biosensors and Biofuel Cells.
    Pinyou P; Ruff A; Pöller S; Ma S; Ludwig R; Schuhmann W
    Chemistry; 2016 Apr; 22(15):5319-26. PubMed ID: 26929043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biofuel cells based on direct enzyme-electrode contacts using PQQ-dependent glucose dehydrogenase/bilirubin oxidase and modified carbon nanotube materials.
    Scherbahn V; Putze MT; Dietzel B; Heinlein T; Schneider JJ; Lisdat F
    Biosens Bioelectron; 2014 Nov; 61():631-8. PubMed ID: 24967753
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wiring of bilirubin oxidases with redox polymers on gas diffusion electrodes for increased stability of self-powered biofuel cells-based glucose sensing.
    Becker JM; Lielpetere A; Szczesny J; Bichon S; Gounel S; Mano N; Schuhmann W
    Bioelectrochemistry; 2023 Feb; 149():108314. PubMed ID: 36335789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon Nanotube-Cellulose Pellicle for Glucose Biofuel Cell.
    Hasan MQ; Yuen J; Slaughter G
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1-4. PubMed ID: 30440309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-powered competitive immunosensor driven by biofuel cell based on hollow-channel paper analytical devices.
    Li S; Wang Y; Ge S; Yu J; Yan M
    Biosens Bioelectron; 2015 Sep; 71():18-24. PubMed ID: 25880834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of a highly efficient O2 cathode based on bilirubin oxidase from Magnaporthe oryzae.
    Cadet M; Brilland X; Gounel S; Louerat F; Mano N
    Chemphyschem; 2013 Jul; 14(10):2097-100. PubMed ID: 23401094
    [No Abstract]   [Full Text] [Related]  

  • 12. Coupling of an enzymatic biofuel cell to an electrochemical cell for self-powered glucose sensing with optical readout.
    Pinyou P; Conzuelo F; Sliozberg K; Vivekananthan J; Contin A; Pöller S; Plumeré N; Schuhmann W
    Bioelectrochemistry; 2015 Dec; 106(Pt A):22-7. PubMed ID: 25892686
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Micro-biofuel cell powered by glucose/O2 based on electro-deposition of enzyme, conducting polymer and redox mediators: preparation, characterization and performance in human serum.
    Ammam M; Fransaer J
    Biosens Bioelectron; 2010 Feb; 25(6):1474-80. PubMed ID: 20005695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Employing FAD-dependent glucose dehydrogenase within a glucose/oxygen enzymatic fuel cell operating in human serum.
    Milton RD; Lim K; Hickey DP; Minteer SD
    Bioelectrochemistry; 2015 Dec; 106(Pt A):56-63. PubMed ID: 25890695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A membraneless glucose/O(2) biofuel cell based on Pd aerogels.
    Wen D; Liu W; Herrmann AK; Eychmüller A
    Chemistry; 2014 Apr; 20(15):4380-5. PubMed ID: 24574358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzymatic Biofuel Cells for Self-Powered, Controlled Drug Release.
    Xiao X; McGourty KD; Magner E
    J Am Chem Soc; 2020 Jul; 142(26):11602-11609. PubMed ID: 32510936
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Microelectronic Sensor Device Powered by a Small Implantable Biofuel Cell.
    Bollella P; Lee I; Blaauw D; Katz E
    Chemphyschem; 2020 Jan; 21(1):120-128. PubMed ID: 31408568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From fundamentals to applications of bioelectrocatalysis: bioelectrocatalytic reactions of FAD-dependent glucose dehydrogenase and bilirubin oxidase.
    Tsujimura S
    Biosci Biotechnol Biochem; 2019 Jan; 83(1):39-48. PubMed ID: 30274547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coupling osmium complexes to epoxy-functionalised polymers to provide mediated enzyme electrodes for glucose oxidation.
    Ó Conghaile P; Pöller S; MacAodha D; Schuhmann W; Leech D
    Biosens Bioelectron; 2013 May; 43():30-7. PubMed ID: 23274194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-feeding paper based biofuel cell/self-powered hybrid μ-supercapacitor integrated system.
    Narvaez Villarrubia CW; Soavi F; Santoro C; Arbizzani C; Serov A; Rojas-Carbonell S; Gupta G; Atanassov P
    Biosens Bioelectron; 2016 Dec; 86():459-465. PubMed ID: 27424264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.