These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 27107392)
1. Effect of pre-treatments on the production of biofuels from Phaeodactylum tricornutum. Caporgno MP; Olkiewicz M; Torras C; Salvadó J; Clavero E; Bengoa C J Environ Manage; 2016 Jul; 177():240-6. PubMed ID: 27107392 [TBL] [Abstract][Full Text] [Related]
2. Co-digestion of cultivated microalgae and sewage sludge from municipal waste water treatment. Olsson J; Feng XM; Ascue J; Gentili FG; Shabiimam MA; Nehrenheim E; Thorin E Bioresour Technol; 2014 Nov; 171():203-10. PubMed ID: 25203227 [TBL] [Abstract][Full Text] [Related]
3. Effects of inoculum source and co-digestion strategies on anaerobic digestion of residues generated in the treatment of waste vegetable oils. Hidalgo D; Martín-Marroquín JM J Environ Manage; 2014 Sep; 142():17-22. PubMed ID: 24794521 [TBL] [Abstract][Full Text] [Related]
4. Integration of enzymatic pretreatment and sludge co-digestion in biogas production from microalgae. Avila R; Carrero E; Vicent T; Blánquez P Waste Manag; 2021 Apr; 124():254-263. PubMed ID: 33639410 [TBL] [Abstract][Full Text] [Related]
5. Kinetic parameter estimation model for anaerobic co-digestion of waste activated sludge and microalgae. Lee E; Cumberbatch J; Wang M; Zhang Q Bioresour Technol; 2017 Mar; 228():9-17. PubMed ID: 28056374 [TBL] [Abstract][Full Text] [Related]
6. Biofuels from microalgae: lipid extraction and methane production from the residual biomass in a biorefinery approach. Hernández D; Solana M; Riaño B; García-González MC; Bertucco A Bioresour Technol; 2014 Oct; 170():370-378. PubMed ID: 25151474 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of biomethanization during co-digestion of thermally pretreated microalgae and waste activated sludge, and estimation of its kinetic parameters. Scarcelli PG; Serejo ML; Paulo PL; Boncz MÁ Sci Total Environ; 2020 Mar; 706():135745. PubMed ID: 31806330 [TBL] [Abstract][Full Text] [Related]
8. Pretreatment and co-digestion of microalgae, sludge and fat oil and grease (FOG) from microalgae-based wastewater treatment plants. Solé-Bundó M; Garfí M; Ferrer I Bioresour Technol; 2020 Feb; 298():122563. PubMed ID: 31841823 [TBL] [Abstract][Full Text] [Related]
9. Algaculture integration in conventional wastewater treatment plants: anaerobic digestion comparison of primary and secondary sludge with microalgae biomass. Mahdy A; Mendez L; Ballesteros M; González-Fernández C Bioresour Technol; 2015 May; 184():236-244. PubMed ID: 25451781 [TBL] [Abstract][Full Text] [Related]
10. Identification of optimum fatty acid extraction methods for two different microalgae Phaeodactylum tricornutum and Haematococcus pluvialis for food and biodiesel applications. Otero P; Saha SK; Gushin JM; Moane S; Barron J; Murray P Anal Bioanal Chem; 2017 Jul; 409(19):4659-4667. PubMed ID: 28593370 [TBL] [Abstract][Full Text] [Related]
11. Efficient anaerobic digestion of whole microalgae and lipid-extracted microalgae residues for methane energy production. Zhao B; Ma J; Zhao Q; Laurens L; Jarvis E; Chen S; Frear C Bioresour Technol; 2014 Jun; 161():423-30. PubMed ID: 24736123 [TBL] [Abstract][Full Text] [Related]
12. Valorisation of biodiesel production wastes: Anaerobic digestion of residual Tetraselmis suecica biomass and co-digestion with glycerol. Santos-Ballardo DU; Font-Segura X; Ferrer AS; Barrena R; Rossi S; Valdez-Ortiz A Waste Manag Res; 2015 Mar; 33(3):250-7. PubMed ID: 25737140 [TBL] [Abstract][Full Text] [Related]
13. Increased anaerobic production of methane by co-digestion of sludge with microalgal biomass and food waste leachate. Kim J; Kang CM Bioresour Technol; 2015; 189():409-412. PubMed ID: 25911192 [TBL] [Abstract][Full Text] [Related]
14. Hydrogen and methane production in a two-stage anaerobic digestion system by co-digestion of food waste, sewage sludge and glycerol. Silva FMS; Mahler CF; Oliveira LB; Bassin JP Waste Manag; 2018 Jun; 76():339-349. PubMed ID: 29486911 [TBL] [Abstract][Full Text] [Related]
15. Co-digestion of microalga-bacteria biomass with papaya waste for methane production. Cea-Barcia G; Pérez J; Buitrón G Water Sci Technol; 2018 Aug; 78(1-2):125-131. PubMed ID: 30101795 [TBL] [Abstract][Full Text] [Related]
16. The use of solar pre-treatment as a strategy to improve the anaerobic biodegradability of microalgal biomass in co-digestion with sewage. Vassalle L; Passos F; Rosa-Machado AT; Moreira C; Reis M; Pascoal de Freitas M; Ferrer I; Mota CR Chemosphere; 2022 Jan; 286(Pt 3):131929. PubMed ID: 34463260 [TBL] [Abstract][Full Text] [Related]
17. Co-digestion of sewage sludge with crude or pretreated glycerol to increase biogas production. Dos Santos Ferreira J; Volschan I; Cammarota MC Environ Sci Pollut Res Int; 2018 Aug; 25(22):21811-21821. PubMed ID: 29796883 [TBL] [Abstract][Full Text] [Related]
18. Production of lipid-containing algal-bacterial polyculture in wastewater and biomethanation of lipid extracted residues: Enhancing methane yield through hydrothermal pretreatment and relieving solvent toxicity through co-digestion. Bohutskyi P; Phan D; Spierling RE; Kopachevsky AM; Bouwer EJ; Lundquist TJ; Betenbaugh MJ Sci Total Environ; 2019 Feb; 653():1377-1394. PubMed ID: 30759577 [TBL] [Abstract][Full Text] [Related]
19. Microalgae to biofuels: life cycle impacts of methane production of anaerobically digested lipid extracted algae. Quinn JC; Hanif A; Sharvelle S; Bradley TH Bioresour Technol; 2014 Nov; 171():37-43. PubMed ID: 25181698 [TBL] [Abstract][Full Text] [Related]
20. Growth and anaerobic digestion characteristics of microalgae cultivated using various types of sewage. Hidaka T; Inoue K; Suzuki Y; Tsumori J Bioresour Technol; 2014 Oct; 170():83-89. PubMed ID: 25127007 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]