These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 27107482)
1. Evaluation of Mucor indicus and Saccharomyces cerevisiae capability to ferment hydrolysates of rape straw and Miscanthus giganteus as affected by the pretreatment method. Lewandowska M; Szymańska K; Kordala N; Dąbrowska A; Bednarski W; Juszczuk A Bioresour Technol; 2016 Jul; 212():262-270. PubMed ID: 27107482 [TBL] [Abstract][Full Text] [Related]
2. The improvement of enzymatic hydrolysis efficiency of rape straw and Miscanthus giganteus polysaccharides. Swiątek K; Lewandowska M; Swiątek M; Bednarski W; Brzozowski B Bioresour Technol; 2014 Jan; 151():323-31. PubMed ID: 24269826 [TBL] [Abstract][Full Text] [Related]
3. Mild alkaline pretreatment can achieve high hydrolytic and fermentation efficiencies for rice straw conversion to bioethanol. Ashoor S; Sukumaran RK Prep Biochem Biotechnol; 2020; 50(8):814-819. PubMed ID: 32204649 [TBL] [Abstract][Full Text] [Related]
4. Study of chemical pretreatment and enzymatic saccharification for producing fermentable sugars from rice straw. Chen WH; Chen YC; Lin JG Bioprocess Biosyst Eng; 2014 Jul; 37(7):1337-44. PubMed ID: 24346765 [TBL] [Abstract][Full Text] [Related]
5. Solid acid catalysts pretreatment and enzymatic hydrolysis of macroalgae cellulosic residue for the production of bioethanol. Tan IS; Lee KT Carbohydr Polym; 2015 Jun; 124():311-21. PubMed ID: 25839825 [TBL] [Abstract][Full Text] [Related]
6. Effects of fertilizer application and dry/wet processing of Miscanthus x giganteus on bioethanol production. Boakye-Boaten NA; Xiu S; Shahbazi A; Wang L; Li R; Mims M; Schimmel K Bioresour Technol; 2016 Mar; 204():98-105. PubMed ID: 26773953 [TBL] [Abstract][Full Text] [Related]
7. Lime pretreatment and fermentation of enzymatically hydrolyzed sugarcane bagasse. Rabelo SC; Maciel Filho R; Costa AC Appl Biochem Biotechnol; 2013 Mar; 169(5):1696-712. PubMed ID: 23334836 [TBL] [Abstract][Full Text] [Related]
8. Bioethanol production: an integrated process of low substrate loading hydrolysis-high sugars liquid fermentation and solid state fermentation of enzymatic hydrolysis residue. Chu Q; Li X; Ma B; Xu Y; Ouyang J; Zhu J; Yu S; Yong Q Bioresour Technol; 2012 Nov; 123():699-702. PubMed ID: 22975252 [TBL] [Abstract][Full Text] [Related]
9. Fractionation of rapeseed straw by hydrothermal/dilute acid pretreatment combined with alkali post-treatment for improving its enzymatic hydrolysis. Chen BY; Zhao BC; Li MF; Liu QY; Sun RC Bioresour Technol; 2017 Feb; 225():127-133. PubMed ID: 27888729 [TBL] [Abstract][Full Text] [Related]
10. Wet oxidation pretreatment, enzymatic hydrolysis and simultaneous saccharification and fermentation of clover-ryegrass mixtures. Martín C; Thomsen MH; Hauggaard-Nielsen H; Belindathomsen A Bioresour Technol; 2008 Dec; 99(18):8777-82. PubMed ID: 18514510 [TBL] [Abstract][Full Text] [Related]
11. Comparative study of ethanol production from sodium hydroxide pretreated rice straw residue using Saccharomyces cerevisiae and Zymomonas mobilis. Kumar N; Yadav A; Singh G; Singh A; Kumar P; Aggarwal NK Arch Microbiol; 2023 Mar; 205(4):146. PubMed ID: 36971832 [TBL] [Abstract][Full Text] [Related]
12. Pretreatment of bamboo by ultra-high pressure explosion with a high-pressure homogenizer for enzymatic hydrolysis and ethanol fermentation. Jiang Z; Fei B; Li Z Bioresour Technol; 2016 Aug; 214():876-880. PubMed ID: 27189535 [TBL] [Abstract][Full Text] [Related]
13. Effect of dilute acid pretreatment on the saccharification and fermentation of rye straw. Robak K; Balcerek M; Dziekońska-Kubczak U; Dziugan P Biotechnol Prog; 2019 May; 35(3):e2789. PubMed ID: 30773839 [TBL] [Abstract][Full Text] [Related]
14. Production of ethanol from sweet sorghum bagasse pretreated with different chemical and physical processes and saccharified with fiber degrading enzymes. Heredia-Olea E; Pérez-Carrillo E; Serna-Saldívar SO Bioresour Technol; 2013 Apr; 134():386-90. PubMed ID: 23489562 [TBL] [Abstract][Full Text] [Related]
15. Milling pretreatment of sugarcane bagasse and straw for enzymatic hydrolysis and ethanol fermentation. da Silva AS; Inoue H; Endo T; Yano S; Bon EP Bioresour Technol; 2010 Oct; 101(19):7402-9. PubMed ID: 20578287 [TBL] [Abstract][Full Text] [Related]
16. Improving bioethanol production from olive pruning biomass by deacetylation step prior acid hydrolysis and fermentation processes. Moya AJ; Peinado S; Mateo S; Fonseca BG; Sánchez S Bioresour Technol; 2016 Nov; 220():239-245. PubMed ID: 27579798 [TBL] [Abstract][Full Text] [Related]
17. Miscanthus as cellulosic biomass for bioethanol production. Lee WC; Kuan WC Biotechnol J; 2015 Jun; 10(6):840-54. PubMed ID: 26013948 [TBL] [Abstract][Full Text] [Related]
18. Ethanol production from acid- and alkali-pretreated corncob by endoglucanase and β-glucosidase co-expressing Saccharomyces cerevisiae subject to the expression of heterologous genes and nutrition added. Feng C; Zou S; Liu C; Yang H; Zhang K; Ma Y; Hong J; Zhang M World J Microbiol Biotechnol; 2016 May; 32(5):86. PubMed ID: 27038956 [TBL] [Abstract][Full Text] [Related]
19. Simultaneous saccharification and fermentation of rice straw into ethanol. Chadha BS; Kanwar SS; Garcha HS Acta Microbiol Immunol Hung; 1995; 42(1):71-5. PubMed ID: 7620815 [TBL] [Abstract][Full Text] [Related]
20. Comparison of the enzymatic digestibility of physically and chemically pretreated selected line of diploid-Miscanthus sinensis Shiozuka and triploid-M.×giganteus. Hideno A; Kawashima A; Anzoua KG; Yamada T Bioresour Technol; 2013 Oct; 146():393-399. PubMed ID: 23954245 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]