BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 27107627)

  • 1. Carbon Capture and Storage (CCS): Risk assessment focused on marine bacteria.
    Borrero-Santiago AR; DelValls TA; Riba I
    Ecotoxicol Environ Saf; 2016 Sep; 131():157-63. PubMed ID: 27107627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of ocean acidification and a carbon dioxide capture and storage leak on the early life stages of the marine mussel Perna perna (Linneaus, 1758) and metal bioavailability.
    Szalaj D; De Orte MR; Goulding TA; Medeiros ID; DelValls TA; Cesar A
    Environ Sci Pollut Res Int; 2017 Jan; 24(1):765-781. PubMed ID: 27752956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulating CO₂ leakages from CCS to determine Zn toxicity using the marine microalgae Pleurochrysis roscoffensis.
    Bautista-Chamizo E; De Orte MR; DelValls TÁ; Riba I
    Chemosphere; 2016 Feb; 144():955-65. PubMed ID: 26432538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CO2 leaking from sub-seabed storage: Responses of two marine bacteria strains.
    Borrero-Santiago AR; Carbú M; DelValls TÁ; Riba I
    Mar Environ Res; 2016 Oct; 121():2-8. PubMed ID: 27255122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differing responses of the estuarine bivalve Limecola balthica to lowered water pH caused by potential CO
    Sokołowski A; Brulińska D; Mirny Z; Burska D; Pryputniewicz-Flis D
    Mar Pollut Bull; 2018 Feb; 127():761-773. PubMed ID: 28987450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Behavioral responses of Arctica islandica (Bivalvia: Arcticidae) to simulated leakages of carbon dioxide from sub-sea geological storage.
    Bamber SD; Westerlund S
    Aquat Toxicol; 2016 Nov; 180():295-305. PubMed ID: 27776295
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential acidification impacts on zooplankton in CCS leakage scenarios.
    Halsband C; Kurihara H
    Mar Pollut Bull; 2013 Aug; 73(2):495-503. PubMed ID: 23632089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of the environmental impacts of ocean acidification (OA) and carbon capture and storage (CCS) leaks using the amphipod Hyale youngi.
    Goulding TA; De Orte MR; Szalaj D; Basallote MD; DelValls TA; Cesar A
    Ecotoxicology; 2017 May; 26(4):521-533. PubMed ID: 28315979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing the influence of ocean acidification to marine amphipods: A comparative study.
    Passarelli MC; Riba I; Cesar A; Serrano-Bernando F; DelValls TA
    Sci Total Environ; 2017 Oct; 595():759-768. PubMed ID: 28407593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CO
    Rastelli E; Corinaldesi C; Dell'Anno A; Amaro T; Greco S; Lo Martire M; Carugati L; Queirós AM; Widdicombe S; Danovaro R
    Mar Environ Res; 2016 Dec; 122():158-168. PubMed ID: 27816195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of sub-seabed CO
    Amaro T; Bertocci I; Queiros AM; Rastelli E; Borgersen G; Brkljacic M; Nunes J; Sorensen K; Danovaro R; Widdicombe S
    Mar Pollut Bull; 2018 Mar; 128():519-526. PubMed ID: 29571404
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lethal and sub-lethal effects of elevated CO2 concentrations on marine benthic invertebrates and fish.
    Lee C; Hong S; Kwon BO; Lee JH; Ryu J; Park YG; Kang SG; Khim JS
    Environ Sci Pollut Res Int; 2016 Aug; 23(15):14945-56. PubMed ID: 27074931
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulating CO
    Díaz-García A; Borrero-Santiago AR; Ángel DelValls T; Riba I
    Mar Pollut Bull; 2017 Mar; 116(1-2):80-86. PubMed ID: 28040253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards quantitative ecological risk assessment of elevated carbon dioxide levels in the marine environment.
    de Vries P; Tamis JE; Foekema EM; Klok C; Murk AJ
    Mar Pollut Bull; 2013 Aug; 73(2):516-23. PubMed ID: 23850125
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Consequences of a simulated rapid ocean acidification event for benthic ecosystem processes and functions.
    Murray F; Widdicombe S; McNeill CL; Solan M
    Mar Pollut Bull; 2013 Aug; 73(2):435-42. PubMed ID: 23219529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sub-lethal and lethal toxicities of elevated CO
    Lee C; Kwon BO; Hong S; Noh J; Lee J; Ryu J; Kang SG; Khim JS
    Environ Pollut; 2018 Oct; 241():586-595. PubMed ID: 29885629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation through column leaching tests of metal release from contaminated estuarine sediment subject to CO₂ leakages from Carbon Capture and Storage sites.
    Payán MC; Galan B; Coz A; Vandecasteele C; Viguri JR
    Environ Pollut; 2012 Dec; 171():174-84. PubMed ID: 22926654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting the impacts of CO2 leakage from subseabed storage: effects of metal accumulation and toxicity on the model benthic organism Ruditapes philippinarum.
    Rodríguez-Romero A; Jiménez-Tenorio N; Basallote MD; De Orte MR; Blasco J; Riba I
    Environ Sci Technol; 2014 Oct; 48(20):12292-301. PubMed ID: 25221911
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacterial community responses during a possible CO
    Borrero-Santiago AR; DelValls TÁ; Inmaculada Riba M
    Sci Total Environ; 2017 Sep; 593-594():116-123. PubMed ID: 28342412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Laboratory simulation system, using Carcinus maenas as the model organism, for assessing the impact of CO2 leakage from sub-seabed injection and storage.
    Rodríguez-Romero A; Jiménez-Tenorio N; Riba I; Blasco J
    Environ Res; 2016 Jan; 144(Pt A):117-129. PubMed ID: 26599590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.