These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 2710770)

  • 1. Host-parasite relationship of Trypanosoma corvi in Ornithomyia avicularia.
    Mungomba LM; Molyneux DH; Wallbanks KR
    Parasitol Res; 1989; 75(3):167-74. PubMed ID: 2710770
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modes of association of Trypanosoma cruzi with the intestinal tract of the vector Triatoma infestans.
    Kollien AH; Schmidt J; Schaub GA
    Acta Trop; 1998 Jun; 70(2):127-41. PubMed ID: 9698259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trypanosomatids in ornithophilic bloodsucking Diptera.
    Svobodová M; Volf P; Votýpka J
    Med Vet Entomol; 2015 Dec; 29(4):444-7. PubMed ID: 26211924
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of two species of the Trypanosoma theileri complex in tabanids.
    Kostygov AY; Frolov AO; Malysheva MN; Ganyukova AI; Drachko D; Yurchenko V; Agasoi VV
    Parasit Vectors; 2022 Mar; 15(1):95. PubMed ID: 35313955
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trypanosoma (megatrypanum) melophagium in the sheep ked, Melophagus ovinus. A scanning electron microscope (SEM) study of the parasites and the insect gut wall surfaces.
    Molyneux DH; Selkirk M; Lavin D
    Acta Trop; 1978 Dec; 35(4):319-28. PubMed ID: 32751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Avian trypanosomes in Simulium and sparrowhawks (Accipiter nisus).
    Dirie MF; Ashford RW; Mungomba LM; Molyneux DH; Green EE
    Parasitology; 1990 Oct; 101 Pt 2():243-7. PubMed ID: 2263419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards an understanding of the interactions of Trypanosoma cruzi and Trypanosoma rangeli within the reduviid insect host Rhodnius prolixus.
    Azambuja P; Ratcliffe NA; Garcia ES
    An Acad Bras Cienc; 2005 Sep; 77(3):397-404. PubMed ID: 16127548
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Refractory barriers in the sand fly Phlebotomus papatasi (Diptera: Psychodidae) to infection with Leishmania panamensis.
    Walters LL; Irons KP; Modi GB; Tesh RB
    Am J Trop Med Hyg; 1992 Feb; 46(2):211-28. PubMed ID: 1539756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fine structure of the alimentary canal of the larval blow fly Chrysomya megacephala (Diptera: Calliphoridae).
    Boonsriwong W; Sukontason K; Olson JK; Vogtsberger RC; Chaithong U; Kuntalue B; Ngern-Klun R; Upakut S; Sukontason KL
    Parasitol Res; 2007 Feb; 100(3):561-74. PubMed ID: 17102987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrastructural biology of Leishmania (Viannia) panamensis (=Leishmania braziliensis panamensis) in Lutzomyia gomezi (Diptera: Psychodidae): a natural host-parasite association.
    Walters LL; Chaplin GL; Modi GB; Tesh RB
    Am J Trop Med Hyg; 1989 Jan; 40(1):19-39. PubMed ID: 2916730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The marsupial trypanosome Trypanosoma copemani is not an obligate intracellular parasite, although it adversely affects cell health.
    Cooper C; Andrew Thompson RC; Rigby P; Buckley A; Peacock C; Clode PL
    Parasit Vectors; 2018 Sep; 11(1):521. PubMed ID: 30236162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distribution and attachment of Trypanosoma (Nannomonas) congolense in the proximal part of the proboscis of Glossina morsitans morsitans.
    Thévenaz P; Hecker H
    Acta Trop; 1980 Jun; 37(2):163-75. PubMed ID: 6106351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The structure of the female sand fly (Phlebotomus papatasi) alimentary canal.
    Warburg A
    Trans R Soc Trop Med Hyg; 2008 Feb; 102(2):161-6. PubMed ID: 18037148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrastructural studies of certain aspects of the development of Trypanosoma congolense in Glossina morsitans morsitans.
    Evans DA; Ellis DS; Stamford S
    J Protozool; 1979 Nov; 26(4):557-63. PubMed ID: 544799
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vector--parasite relationships: the effect of Trypanosoma (Nannomonas) congolense on Glossina pallidipes.
    Kaddu JB; Mutinga MJ
    Ann Trop Med Parasitol; 1983 Jun; 77(3):315-20. PubMed ID: 6625732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An electron microscopic study of penetration by Trypanosoma rangeli into midgut cells of Rhodnius prolixus.
    de Oliveira MA; de Souza W
    J Invertebr Pathol; 2001 Jan; 77(1):22-6. PubMed ID: 11161989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shape-shifting trypanosomes: Flagellar shortening followed by asymmetric division in Trypanosoma congolense from the tsetse proventriculus.
    Peacock L; Kay C; Bailey M; Gibson W
    PLoS Pathog; 2018 May; 14(5):e1007043. PubMed ID: 29772025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Morphological and proteomic characterization of midgut of the malaria vector Anopheles albimanus at early time after a blood feeding.
    Cázares-Raga FE; Chávez-Munguía B; González-Calixto C; Ochoa-Franco AP; Gawinowicz MA; Rodríguez MH; Hernández-Hernández FC
    J Proteomics; 2014 Dec; 111():100-12. PubMed ID: 25132141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trypanosoma cruzi and Trypanosoma rangeli: interplay with hemolymph components of Rhodnius prolixus.
    Mello CB; Garcia ES; Ratcliffe NA; Azambuja P
    J Invertebr Pathol; 1995 May; 65(3):261-8. PubMed ID: 7745280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Do malaria ookinete surface proteins P25 and P28 mediate parasite entry into mosquito midgut epithelial cells?
    Baton LA; Ranford-Cartwright LC
    Malar J; 2005 Feb; 4():15. PubMed ID: 15733320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.