These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
517 related articles for article (PubMed ID: 27107716)
1. Genome-wide transcription start site mapping of Bradyrhizobium japonicum grown free-living or in symbiosis - a rich resource to identify new transcripts, proteins and to study gene regulation. Čuklina J; Hahn J; Imakaev M; Omasits U; Förstner KU; Ljubimov N; Goebel M; Pessi G; Fischer HM; Ahrens CH; Gelfand MS; Evguenieva-Hackenberg E BMC Genomics; 2016 Apr; 17():302. PubMed ID: 27107716 [TBL] [Abstract][Full Text] [Related]
2. Genome-wide identification of transcriptional start sites in the haloarchaeon Haloferax volcanii based on differential RNA-Seq (dRNA-Seq). Babski J; Haas KA; Näther-Schindler D; Pfeiffer F; Förstner KU; Hammelmann M; Hilker R; Becker A; Sharma CM; Marchfelder A; Soppa J BMC Genomics; 2016 Aug; 17(1):629. PubMed ID: 27519343 [TBL] [Abstract][Full Text] [Related]
3. Genome wide transcription start sites analysis of Xanthomonas campestris pv. campestris B100 with insights into the gum gene cluster directing the biosynthesis of the exopolysaccharide xanthan. Alkhateeb RS; Vorhölter FJ; Rückert C; Mentz A; Wibberg D; Hublik G; Niehaus K; Pühler A J Biotechnol; 2016 May; 225():18-28. PubMed ID: 26975844 [TBL] [Abstract][Full Text] [Related]
4. Genome-Wide Analysis of the Transcription Start Sites and Promoter Motifs of Phytoplasmas. Nijo T; Neriya Y; Koinuma H; Iwabuchi N; Kitazawa Y; Tanno K; Okano Y; Maejima K; Yamaji Y; Oshima K; Namba S DNA Cell Biol; 2017 Dec; 36(12):1081-1092. PubMed ID: 29039971 [TBL] [Abstract][Full Text] [Related]
5. Transcriptome analysis of thermophilic methylotrophic Bacillus methanolicus MGA3 using RNA-sequencing provides detailed insights into its previously uncharted transcriptional landscape. Irla M; Neshat A; Brautaset T; Rückert C; Kalinowski J; Wendisch VF BMC Genomics; 2015 Feb; 16(1):73. PubMed ID: 25758049 [TBL] [Abstract][Full Text] [Related]
6. Genome-wide identification of transcription start sites, promoters and transcription factor binding sites in E. coli. Mendoza-Vargas A; Olvera L; Olvera M; Grande R; Vega-Alvarado L; Taboada B; Jimenez-Jacinto V; Salgado H; Juárez K; Contreras-Moreira B; Huerta AM; Collado-Vides J; Morett E PLoS One; 2009 Oct; 4(10):e7526. PubMed ID: 19838305 [TBL] [Abstract][Full Text] [Related]
7. An integrated proteomics and transcriptomics reference data set provides new insights into the Bradyrhizobium japonicum bacteroid metabolism in soybean root nodules. Delmotte N; Ahrens CH; Knief C; Qeli E; Koch M; Fischer HM; Vorholt JA; Hennecke H; Pessi G Proteomics; 2010 Apr; 10(7):1391-400. PubMed ID: 20104621 [TBL] [Abstract][Full Text] [Related]
8. Genome-wide identification and characterization of transcription start sites and promoters in the tunicate Ciona intestinalis. Yokomori R; Shimai K; Nishitsuji K; Suzuki Y; Kusakabe TG; Nakai K Genome Res; 2016 Jan; 26(1):140-50. PubMed ID: 26668163 [TBL] [Abstract][Full Text] [Related]
9. TSS-EMOTE, a refined protocol for a more complete and less biased global mapping of transcription start sites in bacterial pathogens. Prados J; Linder P; Redder P BMC Genomics; 2016 Nov; 17(1):849. PubMed ID: 27806702 [TBL] [Abstract][Full Text] [Related]
10. Differential RNA-seq (dRNA-seq) for annotation of transcriptional start sites and small RNAs in Helicobacter pylori. Bischler T; Tan HS; Nieselt K; Sharma CM Methods; 2015 Sep; 86():89-101. PubMed ID: 26091613 [TBL] [Abstract][Full Text] [Related]
11. One of two hemN genes in Bradyrhizobium japonicum is functional during anaerobic growth and in symbiosis. Fischer HM; Velasco L; Delgado MJ; Bedmar EJ; Schären S; Zingg D; Göttfert M; Hennecke H J Bacteriol; 2001 Feb; 183(4):1300-11. PubMed ID: 11157943 [TBL] [Abstract][Full Text] [Related]
12. Genome-wide determination of transcription start sites reveals new insights into promoter structures in the actinomycete Corynebacterium glutamicum. Albersmeier A; Pfeifer-Sancar K; Rückert C; Kalinowski J J Biotechnol; 2017 Sep; 257():99-109. PubMed ID: 28412515 [TBL] [Abstract][Full Text] [Related]
13. A role for Bradyrhizobium japonicum ECF16 sigma factor EcfS in the formation of a functional symbiosis with soybean. Stockwell SB; Reutimann L; Guerinot ML Mol Plant Microbe Interact; 2012 Jan; 25(1):119-28. PubMed ID: 21879796 [TBL] [Abstract][Full Text] [Related]
14. Global identification of transcription start sites in the genome of Apis mellifera using 5'LongSAGE. Zheng H; Sun L; Peng W; Shen Y; Wang Y; Xu B; Gu W; Chen S; Huang Z; Wang S J Exp Zool B Mol Dev Evol; 2011 Nov; 316(7):500-14. PubMed ID: 21695780 [TBL] [Abstract][Full Text] [Related]
15. TSSer: an automated method to identify transcription start sites in prokaryotic genomes from differential RNA sequencing data. Jorjani H; Zavolan M Bioinformatics; 2014 Apr; 30(7):971-4. PubMed ID: 24371151 [TBL] [Abstract][Full Text] [Related]
16. Small RNAs of the Bradyrhizobium/Rhodopseudomonas lineage and their analysis. Madhugiri R; Pessi G; Voss B; Hahn J; Sharma CM; Reinhardt R; Vogel J; Hess WR; Fischer HM; Evguenieva-Hackenberg E RNA Biol; 2012 Jan; 9(1):47-58. PubMed ID: 22258152 [TBL] [Abstract][Full Text] [Related]
17. High-throughput detection of RNA processing in bacteria. Gill EE; Chan LS; Winsor GL; Dobson N; Lo R; Ho Sui SJ; Dhillon BK; Taylor PK; Shrestha R; Spencer C; Hancock REW; Unrau PJ; Brinkman FSL BMC Genomics; 2018 Mar; 19(1):223. PubMed ID: 29587634 [TBL] [Abstract][Full Text] [Related]
18. Genome-wide analysis of core promoter structures in Schizosaccharomyces pombe with DeepCAGE. Li H; Hou J; Bai L; Hu C; Tong P; Kang Y; Zhao X; Shao Z RNA Biol; 2015; 12(5):525-37. PubMed ID: 25747261 [TBL] [Abstract][Full Text] [Related]
19. Identification of active miRNA promoters from nuclear run-on RNA sequencing. Liu Q; Wang J; Zhao Y; Li CI; Stengel KR; Acharya P; Johnston G; Hiebert SW; Shyr Y Nucleic Acids Res; 2017 Jul; 45(13):e121. PubMed ID: 28460090 [TBL] [Abstract][Full Text] [Related]