BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 27107747)

  • 1. Small RNA changes in synthetic Brassica napus.
    Fu Y; Xiao M; Yu H; Mason AS; Yin J; Li J; Zhang D; Fu D
    Planta; 2016 Sep; 244(3):607-22. PubMed ID: 27107747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing the Response of Small RNA Populations to Allopolyploidy Using Resynthesized Brassica napus Allotetraploids.
    Martinez Palacios P; Jacquemot MP; Tapie M; Rousselet A; Diop M; Remoué C; Falque M; Lloyd A; Jenczewski E; Lassalle G; Chévre AM; Lelandais C; Crespi M; Brabant P; Joets J; Alix K
    Mol Biol Evol; 2019 Apr; 36(4):709-726. PubMed ID: 30657939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-Wide Identification of MicroRNAs in Response to Cadmium Stress in Oilseed Rape (
    Jian H; Yang B; Zhang A; Ma J; Ding Y; Chen Z; Li J; Xu X; Liu L
    Int J Mol Sci; 2018 May; 19(5):. PubMed ID: 29748489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization and expression profiles of miRNAs in the triploid hybrids of Brassica napus and Brassica rapa.
    Zhang L; Zou J; Li S; Wang B; Raboanatahiry N; Li M
    BMC Genomics; 2019 Aug; 20(1):649. PubMed ID: 31412776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide identification and analysis of the WUSCHEL-related homeobox (WOX) gene family in allotetraploid Brassica napus reveals changes in WOX genes during polyploidization.
    Li M; Wang R; Liu Z; Wu X; Wang J
    BMC Genomics; 2019 Apr; 20(1):317. PubMed ID: 31023229
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome wide identification of microRNAs involved in fatty acid and lipid metabolism of Brassica napus by small RNA and degradome sequencing.
    Wang Z; Qiao Y; Zhang J; Shi W; Zhang J
    Gene; 2017 Jul; 619():61-70. PubMed ID: 28377111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tight regulation of the interaction between Brassica napus and Sclerotinia sclerotiorum at the microRNA level.
    Cao JY; Xu YP; Zhao L; Li SS; Cai XZ
    Plant Mol Biol; 2016 Sep; 92(1-2):39-55. PubMed ID: 27325118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Homoeolog expression bias and expression level dominance in resynthesized allopolyploid Brassica napus.
    Wu J; Lin L; Xu M; Chen P; Liu D; Sun Q; Ran L; Wang Y
    BMC Genomics; 2018 Aug; 19(1):586. PubMed ID: 30081834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of digital gene expression to discriminate gene expression differences in early generations of resynthesized Brassica napus and its diploid progenitors.
    Jiang J; Shao Y; Du K; Ran L; Fang X; Wang Y
    BMC Genomics; 2013 Feb; 14():72. PubMed ID: 23369045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid alterations of gene expression and cytosine methylation in newly synthesized Brassica napus allopolyploids.
    Xu Y; Zhong L; Wu X; Fang X; Wang J
    Planta; 2009 Feb; 229(3):471-83. PubMed ID: 18998158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification, evolution, and expression partitioning of miRNAs in allopolyploid Brassica napus.
    Shen E; Zou J; Hubertus Behrens F; Chen L; Ye C; Dai S; Li R; Ni M; Jiang X; Qiu J; Liu Y; Wang W; Zhu QH; Chalhoub B; Bancroft I; Meng J; Cai D; Fan L
    J Exp Bot; 2015 Dec; 66(22):7241-53. PubMed ID: 26357884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-wide identification and analysis of the EIN3/EIL gene family in allotetraploid Brassica napus reveal its potential advantages during polyploidization.
    Li M; Wang R; Liang Z; Wu X; Wang J
    BMC Plant Biol; 2019 Mar; 19(1):110. PubMed ID: 30898097
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational identification of novel microRNAs and targets in Brassica napus.
    Xie FL; Huang SQ; Guo K; Xiang AL; Zhu YY; Nie L; Yang ZM
    FEBS Lett; 2007 Apr; 581(7):1464-74. PubMed ID: 17367786
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic changes following hybridization and genome doubling in synthetic Brassica napus.
    Xu Y; Xu H; Wu X; Fang X; Wang J
    Biochem Genet; 2012 Aug; 50(7-8):616-24. PubMed ID: 22538518
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conservation of the microstructure of genome segments in Brassica napus and its diploid relatives.
    Rana D; van den Boogaart T; O'Neill CM; Hynes L; Bent E; Macpherson L; Park JY; Lim YP; Bancroft I
    Plant J; 2004 Dec; 40(5):725-33. PubMed ID: 15546355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of miRNAs and their targets from Brassica napus by high-throughput sequencing and degradome analysis.
    Xu MY; Dong Y; Zhang QX; Zhang L; Luo YZ; Sun J; Fan YL; Wang L
    BMC Genomics; 2012 Aug; 13():421. PubMed ID: 22920854
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide identification of Sclerotinia sclerotiorum small RNAs and their endogenous targets.
    Regmi R; Newman TE; Khentry Y; Kamphuis LG; Derbyshire MC
    BMC Genomics; 2023 Oct; 24(1):582. PubMed ID: 37784009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Latent S alleles are widespread in cultivated self-compatible Brassica napus.
    Ekuere UU; Parkin IA; Bowman C; Marshall D; Lydiate DJ
    Genome; 2004 Apr; 47(2):257-65. PubMed ID: 15060578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene conversion events and variable degree of homogenization of rDNA loci in cultivars of Brassica napus.
    Sochorová J; Coriton O; Kuderová A; Lunerová J; Chèvre AM; Kovařík A
    Ann Bot; 2017 Jan; 119(1):13-26. PubMed ID: 27707747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Small RNA and degradome profiling involved in seed development and oil synthesis of Brassica napus.
    Wei W; Li G; Jiang X; Wang Y; Ma Z; Niu Z; Wang Z; Geng X
    PLoS One; 2018; 13(10):e0204998. PubMed ID: 30332454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.