These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
488 related articles for article (PubMed ID: 27108223)
1. The genome and genetics of a high oxidative stress tolerant Serratia sp. LCN16 isolated from the plant parasitic nematode Bursaphelenchus xylophilus. Vicente CS; Nascimento FX; Ikuyo Y; Cock PJ; Mota M; Hasegawa K BMC Genomics; 2016 Apr; 17():301. PubMed ID: 27108223 [TBL] [Abstract][Full Text] [Related]
2. Evidence for an Opportunistic and Endophytic Lifestyle of the Bursaphelenchus xylophilus-Associated Bacteria Serratia marcescens PWN146 Isolated from Wilting Pinus pinaster. Vicente CS; Nascimento FX; Barbosa P; Ke HM; Tsai IJ; Hirao T; Cock PJ; Kikuchi T; Hasegawa K; Mota M Microb Ecol; 2016 Oct; 72(3):669-81. PubMed ID: 27461253 [TBL] [Abstract][Full Text] [Related]
3. Non-specific transient mutualism between the plant parasitic nematode, Bursaphelenchus xylophilus, and the opportunistic bacterium Serratia quinivorans BXF1, a plant-growth promoting pine endophyte with antagonistic effects. Nascimento FX; Espada M; Barbosa P; Rossi MJ; Vicente CS; Mota M Environ Microbiol; 2016 Dec; 18(12):5265-5276. PubMed ID: 27768814 [TBL] [Abstract][Full Text] [Related]
4. Pinewood nematode-associated bacteria contribute to oxidative stress resistance of Bursaphelenchus xylophilus. Vicente CS; Ikuyo Y; Mota M; Hasegawa K BMC Microbiol; 2013 Dec; 13():299. PubMed ID: 24365493 [TBL] [Abstract][Full Text] [Related]
5. Autophagy contributes to resistance to the oxidative stress induced by pine reactive oxygen species metabolism, promoting infection by Bursaphelenchus xylophilus. Liu HB; Rui L; Feng YQ; Wu XQ Pest Manag Sci; 2020 Aug; 76(8):2755-2767. PubMed ID: 32187440 [TBL] [Abstract][Full Text] [Related]
6. Effects of Endobacterium (Stenotrophomonas maltophilia) on Pathogenesis-Related Gene Expression of Pine Wood Nematode (Bursaphelenchus xylophilus) and Pine Wilt Disease. He LX; Wu XQ; Xue Q; Qiu XW Int J Mol Sci; 2016 May; 17(6):. PubMed ID: 27231904 [TBL] [Abstract][Full Text] [Related]
7. Distinct biogeographic patterns for bacteria and fungi in association with Cao Y; Yang N; Gu J; Zhang X; Ye J; Chen J; Li H Microbiol Spectr; 2024 Oct; 12(10):e0077824. PubMed ID: 39162557 [TBL] [Abstract][Full Text] [Related]
8. Understanding pine wilt disease: roles of the pine endophytic bacteria and of the bacteria carried by the disease-causing pinewood nematode. Proença DN; Grass G; Morais PV Microbiologyopen; 2017 Apr; 6(2):. PubMed ID: 27785885 [TBL] [Abstract][Full Text] [Related]
9. From plants to nematodes: Serratia grimesii BXF1 genome reveals an adaptation to the modulation of multi-species interactions. Nascimento F; Vicente C; Cock P; Tavares M; Rossi M; Hasegawa K; Mota M Microb Genom; 2018 Jul; 4(7):. PubMed ID: 29781797 [TBL] [Abstract][Full Text] [Related]
10. Susceptibility to the pinewood nematode (PWN) of four pine species involved in potential range expansion across Europe. Nunes da Silva M; Solla A; Sampedro L; Zas R; Vasconcelos MW Tree Physiol; 2015 Sep; 35(9):987-99. PubMed ID: 26220737 [TBL] [Abstract][Full Text] [Related]
11. Pathogenicity of aseptic Bursaphelenchus xylophilus. Zhu LH; Ye J; Negi S; Xu XL; Wang ZL; Ji JY PLoS One; 2012; 7(5):e38095. PubMed ID: 22662271 [TBL] [Abstract][Full Text] [Related]
12. Influence of Bxpel1 Gene Silencing by dsRNA Interference on the Development and Pathogenicity of the Pine Wood Nematode, Bursaphelenchus xylophilus. Qiu XW; Wu XQ; Huang L; Ye JR Int J Mol Sci; 2016 Jan; 17(1):. PubMed ID: 26797602 [TBL] [Abstract][Full Text] [Related]
13. Molecular Characterization and Functional Analysis of Three Autophagy Genes, Liu HB; Rui L; Feng YQ; Wu XQ Int J Mol Sci; 2019 Aug; 20(15):. PubMed ID: 31374896 [TBL] [Abstract][Full Text] [Related]
14. Cathepsin L-like Cysteine Proteinase Genes Are Associated with the Development and Pathogenicity of Pine Wood Nematode, Xue Q; Wu XQ; Zhang WJ; Deng LN; Wu MM Int J Mol Sci; 2019 Jan; 20(1):. PubMed ID: 30626082 [TBL] [Abstract][Full Text] [Related]
15. Molecular Defense Response of Pine Trees ( Modesto I; Mendes A; Carrasquinho I; Miguel CM Cells; 2022 Oct; 11(20):. PubMed ID: 36291077 [TBL] [Abstract][Full Text] [Related]
16. Characterization of the Pinus massoniana transcriptional response to Bursaphelenchus xylophilus infection using suppression subtractive hybridization. Xu L; Liu ZY; Zhang K; Lu Q; Liang J; Zhang XY Int J Mol Sci; 2013 May; 14(6):11356-75. PubMed ID: 23759987 [TBL] [Abstract][Full Text] [Related]
17. Nematicidal Coumarins from Feng J; Qin C; Liu X; Li R; Wang C; Li C; Du G; Guo Q Molecules; 2023 May; 28(10):. PubMed ID: 37241850 [TBL] [Abstract][Full Text] [Related]
18. Construction of genetic linkage map and identification of a novel major locus for resistance to pine wood nematode in Japanese black pine (Pinus thunbergii). Hirao T; Matsunaga K; Hirakawa H; Shirasawa K; Isoda K; Mishima K; Tamura M; Watanabe A BMC Plant Biol; 2019 Oct; 19(1):424. PubMed ID: 31615405 [TBL] [Abstract][Full Text] [Related]
19. Searching for resistance genes to Bursaphelenchus xylophilus using high throughput screening. Santos CS; Pinheiro M; Silva AI; Egas C; Vasconcelos MW BMC Genomics; 2012 Nov; 13():599. PubMed ID: 23134679 [TBL] [Abstract][Full Text] [Related]
20. Bacterial role in pine wilt disease development - review and future perspectives. Nascimento FX; Hasegawa K; Mota M; Vicente CS Environ Microbiol Rep; 2015 Feb; 7(1):51-63. PubMed ID: 25139220 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]