BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 27108533)

  • 1. A CRISPR/Cas9 system adapted for gene editing in marine algae.
    Nymark M; Sharma AK; Sparstad T; Bones AM; Winge P
    Sci Rep; 2016 Apr; 6():24951. PubMed ID: 27108533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation of Mutants of Nuclear-Encoded Plastid Proteins Using CRISPR/Cas9 in the Diatom Phaeodactylum tricornutum.
    Allorent G; Guglielmino E; Giustini C; Courtois F
    Methods Mol Biol; 2018; 1829():367-378. PubMed ID: 29987734
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome editing in diatoms: achievements and goals.
    Kroth PG; Bones AM; Daboussi F; Ferrante MI; Jaubert M; Kolot M; Nymark M; Río Bártulos C; Ritter A; Russo MT; Serif M; Winge P; Falciatore A
    Plant Cell Rep; 2018 Oct; 37(10):1401-1408. PubMed ID: 30167805
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous knockout of multiple LHCF genes using single sgRNAs and engineering of a high-fidelity Cas9 for precise genome editing in marine algae.
    Sharma AK; Nymark M; Flo S; Sparstad T; Bones AM; Winge P
    Plant Biotechnol J; 2021 Aug; 19(8):1658-1669. PubMed ID: 33759354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Expanded Plasmid-Based Genetic Toolbox Enables Cas9 Genome Editing and Stable Maintenance of Synthetic Pathways in Phaeodactylum tricornutum.
    Slattery SS; Diamond A; Wang H; Therrien JA; Lant JT; Jazey T; Lee K; Klassen Z; Desgagné-Penix I; Karas BJ; Edgell DR
    ACS Synth Biol; 2018 Feb; 7(2):328-338. PubMed ID: 29298053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR/Cas9 Gene Editing in the Marine Diatom
    Nymark M; Sharma AK; Hafskjold MCG; Sparstad T; Bones AM; Winge P
    Bio Protoc; 2017 Aug; 7(15):e2442. PubMed ID: 34541161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transgene-free genome editing in marine algae by bacterial conjugation - comparison with biolistic CRISPR/Cas9 transformation.
    Sharma AK; Nymark M; Sparstad T; Bones AM; Winge P
    Sci Rep; 2018 Sep; 8(1):14401. PubMed ID: 30258061
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diving into marine genomics with CRISPR/Cas9 systems.
    Momose T; Concordet JP
    Mar Genomics; 2016 Dec; 30():55-65. PubMed ID: 27742404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro CRISPR-Cas9-mediated efficient Ad5 vector modification.
    Tang L; Gong M; Zhang P
    Biochem Biophys Res Commun; 2016 May; 474(2):395-399. PubMed ID: 27125457
    [TBL] [Abstract][Full Text] [Related]  

  • 10. One-step generation of multiple gene knock-outs in the diatom Phaeodactylum tricornutum by DNA-free genome editing.
    Serif M; Dubois G; Finoux AL; Teste MA; Jallet D; Daboussi F
    Nat Commun; 2018 Sep; 9(1):3924. PubMed ID: 30254261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR-Cas9 System for Genome Engineering of Photosynthetic Microalgae.
    Patel VK; Soni N; Prasad V; Sapre A; Dasgupta S; Bhadra B
    Mol Biotechnol; 2019 Aug; 61(8):541-561. PubMed ID: 31140149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeted genome editing in the rare actinomycete Actinoplanes sp. SE50/110 by using the CRISPR/Cas9 System.
    Wolf T; Gren T; Thieme E; Wibberg D; Zemke T; Pühler A; Kalinowski J
    J Biotechnol; 2016 Aug; 231():122-128. PubMed ID: 27262504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimizing CRISPR/Cas9 for the Diatom
    Stukenberg D; Zauner S; Dell'Aquila G; Maier UG
    Front Plant Sci; 2018; 9():740. PubMed ID: 29928285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome editing of model oleaginous microalgae Nannochloropsis spp. by CRISPR/Cas9.
    Wang Q; Lu Y; Xin Y; Wei L; Huang S; Xu J
    Plant J; 2016 Dec; 88(6):1071-1081. PubMed ID: 27538728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A 'suicide' CRISPR-Cas9 system to promote gene deletion and restoration by electroporation in Cryptococcus neoformans.
    Wang Y; Wei D; Zhu X; Pan J; Zhang P; Huo L; Zhu X
    Sci Rep; 2016 Aug; 6():31145. PubMed ID: 27503169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a genome editing technique using the CRISPR/Cas9 system in the industrial filamentous fungus Aspergillus oryzae.
    Katayama T; Tanaka Y; Okabe T; Nakamura H; Fujii W; Kitamoto K; Maruyama J
    Biotechnol Lett; 2016 Apr; 38(4):637-42. PubMed ID: 26687199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring the potential of genome editing CRISPR-Cas9 technology.
    Singh V; Braddick D; Dhar PK
    Gene; 2017 Jan; 599():1-18. PubMed ID: 27836667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The application of somatic CRISPR-Cas9 to conditional genome editing in Caenorhabditis elegans.
    Li W; Ou G
    Genesis; 2016 Apr; 54(4):170-81. PubMed ID: 26934570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR/Cas9: an advanced tool for editing plant genomes.
    Samanta MK; Dey A; Gayen S
    Transgenic Res; 2016 Oct; 25(5):561-73. PubMed ID: 27012546
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visualization analysis of CRISPR/Cas9 gene editing technology studies.
    Du QS; Cui J; Zhang CJ; He K
    J Zhejiang Univ Sci B; 2016 Oct.; 17(10):798-806. PubMed ID: 27704749
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.