These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
312 related articles for article (PubMed ID: 27108712)
21. Long-term Jang JW; Kang YN; Seo HW; Kim B; Choe HK; Park SH; Lee MG; Kim S J Neural Eng; 2021 Nov; 18(6):. PubMed ID: 34795067 [No Abstract] [Full Text] [Related]
22. Chronic intracortical microstimulation (ICMS) of cat sensory cortex using the Utah Intracortical Electrode Array. Rousche PJ; Normann RA IEEE Trans Rehabil Eng; 1999 Mar; 7(1):56-68. PubMed ID: 10188608 [TBL] [Abstract][Full Text] [Related]
23. Microelectrode array for chronic deep-brain microstimulation and recording. McCreery D; Lossinsky A; Pikov V; Liu X IEEE Trans Biomed Eng; 2006 Apr; 53(4):726-37. PubMed ID: 16602580 [TBL] [Abstract][Full Text] [Related]
24. An astrocyte derived extracellular matrix coating reduces astrogliosis surrounding chronically implanted microelectrode arrays in rat cortex. Oakes RS; Polei MD; Skousen JL; Tresco PA Biomaterials; 2018 Feb; 154():1-11. PubMed ID: 29117574 [TBL] [Abstract][Full Text] [Related]
25. Chronic recording capability of the Utah Intracortical Electrode Array in cat sensory cortex. Rousche PJ; Normann RA J Neurosci Methods; 1998 Jul; 82(1):1-15. PubMed ID: 10223510 [TBL] [Abstract][Full Text] [Related]
26. The role of flexible polymer interconnects in chronic tissue response induced by intracortical microelectrodes--a modeling and an in vivo study. Subbaroyan J; Kipke DR Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():3588-91. PubMed ID: 17947041 [TBL] [Abstract][Full Text] [Related]
27. In vivo validation of custom-designed silicon-based microelectrode arrays for long-term neural recording and stimulation. Han M; Manoonkitiwongsa PS; Wang CX; McCreery DB IEEE Trans Biomed Eng; 2012 Feb; 59(2):346-54. PubMed ID: 22020666 [TBL] [Abstract][Full Text] [Related]
28. Thin microelectrodes reduce GFAP expression in the implant site in rodent somatosensory cortex. Stice P; Gilletti A; Panitch A; Muthuswamy J J Neural Eng; 2007 Jun; 4(2):42-53. PubMed ID: 17409479 [TBL] [Abstract][Full Text] [Related]
29. Utah array characterization and histological analysis of a multi-year implant in non-human primate motor and sensory cortices. Patel PR; Welle EJ; Letner JG; Shen H; Bullard AJ; Caldwell CM; Vega-Medina A; Richie JM; Thayer HE; Patil PG; Cai D; Chestek CA J Neural Eng; 2023 Jan; 20(1):. PubMed ID: 36595323 [No Abstract] [Full Text] [Related]
30. The impact of modulating the blood-brain barrier on the electrophysiological and histological outcomes of intracortical electrodes. Falcone JD; Sohal HS; Kyriakides TR; Bellamkonda RV J Neural Eng; 2019 Aug; 16(4):046005. PubMed ID: 31048574 [TBL] [Abstract][Full Text] [Related]
32. The effects of prolonged intracortical microstimulation on the excitability of pyramidal tract neurons in the cat. McCreery DB; Agnew WF; Bullara LA Ann Biomed Eng; 2002 Jan; 30(1):107-19. PubMed ID: 11874134 [TBL] [Abstract][Full Text] [Related]
33. Chronic neural recording using silicon-substrate microelectrode arrays implanted in cerebral cortex. Vetter RJ; Williams JC; Hetke JF; Nunamaker EA; Kipke DR IEEE Trans Biomed Eng; 2004 Jun; 51(6):896-904. PubMed ID: 15188856 [TBL] [Abstract][Full Text] [Related]
34. Temporally structured impulse activity in spontaneously discharging somatosensory cortical neurons in the awake cat: recognition and quantitative description of four different patterns of bursts, post-recording GFAP immunohistology and computer reconstruction of the studied cortical surface. Miasnikov AA; Webster HH; Dykes RW Brain Res Brain Res Protoc; 1999 Apr; 4(1):49-68. PubMed ID: 10234453 [TBL] [Abstract][Full Text] [Related]
35. Differential expression of genes involved in the chronic response to intracortical microelectrodes. Song S; Druschel LN; Chan ER; Capadona JR Acta Biomater; 2023 Oct; 169():348-362. PubMed ID: 37507031 [TBL] [Abstract][Full Text] [Related]
36. Neuronal loss due to prolonged controlled-current stimulation with chronically implanted microelectrodes in the cat cerebral cortex. McCreery D; Pikov V; Troyk PR J Neural Eng; 2010 Jun; 7(3):036005. PubMed ID: 20460692 [TBL] [Abstract][Full Text] [Related]
37. [Quality of neuronal signal registered in the monkey motor cortex with chronically implanted multiple microwires]. Bondar' IV; Vasil'eva LN; Badakva AM; Miller NV; Zobova LN; Roshchin VIu Zh Vyssh Nerv Deiat Im I P Pavlova; 2014; 64(1):101-12. PubMed ID: 25710068 [TBL] [Abstract][Full Text] [Related]
38. Toward a comparison of microelectrodes for acute and chronic recordings. Ward MP; Rajdev P; Ellison C; Irazoqui PP Brain Res; 2009 Jul; 1282():183-200. PubMed ID: 19486899 [TBL] [Abstract][Full Text] [Related]
39. A comparison of the tissue response to chronically implanted Parylene-C-coated and uncoated planar silicon microelectrode arrays in rat cortex. Winslow BD; Christensen MB; Yang WK; Solzbacher F; Tresco PA Biomaterials; 2010 Dec; 31(35):9163-72. PubMed ID: 20561678 [TBL] [Abstract][Full Text] [Related]
40. First long term in vivo study on subdurally implanted micro-ECoG electrodes, manufactured with a novel laser technology. Henle C; Raab M; Cordeiro JG; Doostkam S; Schulze-Bonhage A; Stieglitz T; Rickert J Biomed Microdevices; 2011 Feb; 13(1):59-68. PubMed ID: 20838900 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]