These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

2574 related articles for article (PubMed ID: 27108839)

  • 1. TGF-β: the master regulator of fibrosis.
    Meng XM; Nikolic-Paterson DJ; Lan HY
    Nat Rev Nephrol; 2016 Jun; 12(6):325-38. PubMed ID: 27108839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Central role of dysregulation of TGF-β/Smad in CKD progression and potential targets of its treatment.
    Chen L; Yang T; Lu DW; Zhao H; Feng YL; Chen H; Chen DQ; Vaziri ND; Zhao YY
    Biomed Pharmacother; 2018 May; 101():670-681. PubMed ID: 29518614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TGF-β/Smad and Renal Fibrosis.
    Ma TT; Meng XM
    Adv Exp Med Biol; 2019; 1165():347-364. PubMed ID: 31399973
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TGF-beta1-induced connective tissue growth factor (CCN2) expression in human renal proximal tubule epithelial cells requires Ras/MEK/ERK and Smad signalling.
    Phanish MK; Wahab NA; Hendry BM; Dockrell ME
    Nephron Exp Nephrol; 2005; 100(4):e156-65. PubMed ID: 15855807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TGF-β/BMP proteins as therapeutic targets in renal fibrosis. Where have we arrived after 25 years of trials and tribulations?
    Muñoz-Félix JM; González-Núñez M; Martínez-Salgado C; López-Novoa JM
    Pharmacol Ther; 2015 Dec; 156():44-58. PubMed ID: 26493350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. miR-130a-3p inhibition protects against renal fibrosis in vitro via the TGF-β1/Smad pathway by targeting SnoN.
    Ai K; Zhu X; Kang Y; Li H; Zhang L
    Exp Mol Pathol; 2020 Feb; 112():104358. PubMed ID: 31836508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New insights into TGF-β/Smad signaling in tissue fibrosis.
    Hu HH; Chen DQ; Wang YN; Feng YL; Cao G; Vaziri ND; Zhao YY
    Chem Biol Interact; 2018 Aug; 292():76-83. PubMed ID: 30017632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transforming growth factor-β/Smad signalling in diabetic nephropathy.
    Lan HY
    Clin Exp Pharmacol Physiol; 2012 Aug; 39(8):731-8. PubMed ID: 22211842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of the TGF-β/BMP-7/Smad pathways in renal diseases.
    Meng XM; Chung AC; Lan HY
    Clin Sci (Lond); 2013 Feb; 124(4):243-54. PubMed ID: 23126427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Downregulation of Smad transcriptional corepressors SnoN and Ski in the fibrotic kidney: an amplification mechanism for TGF-beta1 signaling.
    Yang J; Zhang X; Li Y; Liu Y
    J Am Soc Nephrol; 2003 Dec; 14(12):3167-77. PubMed ID: 14638915
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TGF-β/Smad signaling in kidney disease.
    Lan HY; Chung AC
    Semin Nephrol; 2012 May; 32(3):236-43. PubMed ID: 22835454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transforming growth factor-β signalling in renal fibrosis: from Smads to non-coding RNAs.
    Tang PM; Zhang YY; Mak TS; Tang PC; Huang XR; Lan HY
    J Physiol; 2018 Aug; 596(16):3493-3503. PubMed ID: 29781524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transforming growth factor-beta and Smad signalling in kidney diseases.
    Wang W; Koka V; Lan HY
    Nephrology (Carlton); 2005 Feb; 10(1):48-56. PubMed ID: 15705182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ureic clearance granule, alleviates renal dysfunction and tubulointerstitial fibrosis by promoting extracellular matrix degradation in renal failure rats, compared with enalapril.
    Huang YR; Wei QX; Wan YG; Sun W; Mao ZM; Chen HL; Meng XJ; Shi XM; Tu Y; Zhu Q
    J Ethnopharmacol; 2014 Sep; 155(3):1541-52. PubMed ID: 25087615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TGF-β signaling via TAK1 pathway: role in kidney fibrosis.
    Choi ME; Ding Y; Kim SI
    Semin Nephrol; 2012 May; 32(3):244-52. PubMed ID: 22835455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of the transforming growth factor-beta 1 signalling pathway as a possible link between hyperphosphataemia and renal fibrosis in feline chronic kidney disease.
    Lawson JS; Syme HM; Wheeler-Jones CPD; Elliott J
    Vet J; 2021 Jan; 267():105582. PubMed ID: 33375963
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anti-fibrotic effects of synthetic TGF-β1 and Smad oligodeoxynucleotide on kidney fibrosis in vivo and in vitro through inhibition of both epithelial dedifferentiation and endothelial-mesenchymal transitions.
    Gwon MG; An HJ; Kim JY; Kim WH; Gu H; Kim HJ; Leem J; Jung HJ; Park KK
    FASEB J; 2020 Jan; 34(1):333-349. PubMed ID: 31914629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tanshinone IIA attenuates renal fibrosis and inflammation via altering expression of TGF-β/Smad and NF-κB signaling pathway in 5/6 nephrectomized rats.
    Wang DT; Huang RH; Cheng X; Zhang ZH; Yang YJ; Lin X
    Int Immunopharmacol; 2015 May; 26(1):4-12. PubMed ID: 25744602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hepatocyte growth factor suppresses renal interstitial myofibroblast activation and intercepts Smad signal transduction.
    Yang J; Dai C; Liu Y
    Am J Pathol; 2003 Aug; 163(2):621-32. PubMed ID: 12875981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adenovirus-mediated P311 ameliorates renal fibrosis through inhibition of epithelial-mesenchymal transition via TGF-β1-Smad-ILK pathway in unilateral ureteral obstruction rats.
    Qi FH; Cai PP; Liu X; Si GM
    Int J Mol Med; 2018 May; 41(5):3015-3023. PubMed ID: 29436600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 129.