BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1342 related articles for article (PubMed ID: 27108886)

  • 1. Whole exome sequencing is necessary to clarify ID/DD cases with de novo copy number variants of uncertain significance: Two proof-of-concept examples.
    Giorgio E; Ciolfi A; Biamino E; Caputo V; Di Gregorio E; Belligni EF; Calcia A; Gaidolfi E; Bruselles A; Mancini C; Cavalieri S; Molinatto C; Cirillo Silengo M; Ferrero GB; Tartaglia M; Brusco A
    Am J Med Genet A; 2016 Jul; 170(7):1772-9. PubMed ID: 27108886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exome sequencing reveals a novel CWF19L1 mutation associated with intellectual disability and cerebellar atrophy.
    Evers C; Kaufmann L; Seitz A; Paramasivam N; Granzow M; Karch S; Fischer C; Hinderhofer K; Gdynia G; Elsässer M; Pinkert S; Schlesner M; Bartram CR; Moog U
    Am J Med Genet A; 2016 Jun; 170(6):1502-9. PubMed ID: 27016154
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of a novel homozygous TRAPPC9 gene mutation causing non-syndromic intellectual disability, speech disorder, and secondary microcephaly.
    Abbasi AA; Blaesius K; Hu H; Latif Z; Picker-Minh S; Khan MN; Farooq S; Khan MA; Kaindl AM
    Am J Med Genet B Neuropsychiatr Genet; 2017 Dec; 174(8):839-845. PubMed ID: 29031008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CNV analysis using whole exome sequencing identified biallelic CNVs of VPS13B in siblings with intellectual disability.
    Enomoto Y; Tsurusaki Y; Yokoi T; Abe-Hatano C; Ida K; Naruto T; Mitsui J; Tsuji S; Morishita S; Kurosawa K
    Eur J Med Genet; 2020 Jan; 63(1):103610. PubMed ID: 30602132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GPR126: A novel candidate gene implicated in autosomal recessive intellectual disability.
    Hosseini M; Fattahi Z; Abedini SS; Hu H; Ropers HH; Kalscheuer VM; Najmabadi H; Kahrizi K
    Am J Med Genet A; 2019 Jan; 179(1):13-19. PubMed ID: 30549416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RELN and VLDLR mutations underlie two distinguishable clinico-radiological phenotypes.
    Valence S; Garel C; Barth M; Toutain A; Paris C; Amsallem D; Barthez MA; Mayer M; Rodriguez D; Burglen L
    Clin Genet; 2016 Dec; 90(6):545-549. PubMed ID: 27000652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. De novo variants in CDK13 associated with syndromic ID/DD: Molecular and clinical delineation of 15 individuals and a further review.
    van den Akker WMR; Brummelman I; Martis LM; Timmermans RN; Pfundt R; Kleefstra T; Willemsen MH; Gerkes EH; Herkert JC; van Essen AJ; Rump P; Vansenne F; Terhal PA; van Haelst MM; Cristian I; Turner CE; Cho MT; Begtrup A; Willaert R; Fassi E; van Gassen KLI; Stegmann APA; de Vries BBA; Schuurs-Hoeijmakers JHM
    Clin Genet; 2018 May; 93(5):1000-1007. PubMed ID: 29393965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduced cell surface levels of GPI-linked markers in a new case with PIGG loss of function.
    Zhao JJ; Halvardson J; Knaus A; Georgii-Hemming P; Baeck P; Krawitz PM; Thuresson AC; Feuk L
    Hum Mutat; 2017 Oct; 38(10):1394-1401. PubMed ID: 28581210
    [TBL] [Abstract][Full Text] [Related]  

  • 9. De novo mutation screening in childhood-onset cerebellar atrophy identifies gain-of-function mutations in the CACNA1G calcium channel gene.
    Chemin J; Siquier-Pernet K; Nicouleau M; Barcia G; Ahmad A; Medina-Cano D; Hanein S; Altin N; Hubert L; Bole-Feysot C; Fourage C; Nitschké P; Thevenon J; Rio M; Blanc P; Vidal C; Bahi-Buisson N; Desguerre I; Munnich A; Lyonnet S; Boddaert N; Fassi E; Shinawi M; Zimmerman H; Amiel J; Faivre L; Colleaux L; Lory P; Cantagrel V
    Brain; 2018 Jul; 141(7):1998-2013. PubMed ID: 29878067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. De novo FBXO11 mutations are associated with intellectual disability and behavioural anomalies.
    Fritzen D; Kuechler A; Grimmel M; Becker J; Peters S; Sturm M; Hundertmark H; Schmidt A; Kreiß M; Strom TM; Wieczorek D; Haack TB; Beck-Wödl S; Cremer K; Engels H
    Hum Genet; 2018 May; 137(5):401-411. PubMed ID: 29796876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Homozygous single base deletion in TUSC3 causes intellectual disability with developmental delay in an Omani family.
    Al-Amri A; Saegh AA; Al-Mamari W; El-Asrag ME; Ivorra JL; Cardno AG; Inglehearn CF; Clapcote SJ; Ali M
    Am J Med Genet A; 2016 Jul; 170(7):1826-31. PubMed ID: 27148795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A homozygous splice site mutation in TRAPPC9 causes intellectual disability and microcephaly.
    Kakar N; Goebel I; Daud S; Nürnberg G; Agha N; Ahmad A; Nürnberg P; Kubisch C; Ahmad J; Borck G
    Eur J Med Genet; 2012 Dec; 55(12):727-31. PubMed ID: 22989526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comprehensive investigation of CASK mutations and other genetic etiologies in 41 patients with intellectual disability and microcephaly with pontine and cerebellar hypoplasia (MICPCH).
    Hayashi S; Uehara DT; Tanimoto K; Mizuno S; Chinen Y; Fukumura S; Takanashi JI; Osaka H; Okamoto N; Inazawa J
    PLoS One; 2017; 12(8):e0181791. PubMed ID: 28783747
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Array-CGH increased the diagnostic rate of developmental delay or intellectual disability in Taiwan.
    Lee CL; Lee CH; Chuang CK; Chiu HC; Chen YJ; Chou CL; Wu PS; Chen CP; Lin HY; Lin SP
    Pediatr Neonatol; 2019 Aug; 60(4):453-460. PubMed ID: 30581099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Further insights into the spectrum phenotype of TRAPPC9 and CDK5RAP2 genes, segregating independently in a large Tunisian family with intellectual disability and microcephaly.
    Ben Ayed I; Bouchaala W; Bouzid A; Feki W; Souissi A; Ben Nsir S; Ben Said M; Sammouda T; Majdoub F; Kharrat I; Kamoun F; Elloumi I; Kamoun H; Tlili A; Masmoudi S; Triki C
    Eur J Med Genet; 2021 Dec; 64(12):104373. PubMed ID: 34737153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two microcephaly-associated novel missense mutations in CASK specifically disrupt the CASK-neurexin interaction.
    LaConte LEW; Chavan V; Elias AF; Hudson C; Schwanke C; Styren K; Shoof J; Kok F; Srivastava S; Mukherjee K
    Hum Genet; 2018 Mar; 137(3):231-246. PubMed ID: 29426960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fetal brain disruption sequence versus fetal brain arrest: A distinct autosomal recessive developmental brain malformation phenotype.
    Abdel-Salam GM; Abdel-Hamid MS; El-Khayat HA; Eid OM; Saba S; Farag MK; Saleem SN; Gaber KR
    Am J Med Genet A; 2015 May; 167A(5):1089-99. PubMed ID: 25755095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phenotypic and molecular insights into CASK-related disorders in males.
    Moog U; Bierhals T; Brand K; Bautsch J; Biskup S; Brune T; Denecke J; de Die-Smulders CE; Evers C; Hempel M; Henneke M; Yntema H; Menten B; Pietz J; Pfundt R; Schmidtke J; Steinemann D; Stumpel CT; Van Maldergem L; Kutsche K
    Orphanet J Rare Dis; 2015 Apr; 10():44. PubMed ID: 25886057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expanding the phenotypic spectrum associated with OPHN1 mutations: Report of 17 individuals with intellectual disability but no cerebellar hypoplasia.
    Moortgat S; Lederer D; Deprez M; Buzatu M; Clapuyt P; Boulanger S; Benoit V; Mary S; Guichet A; Ziegler A; Colin E; Bonneau D; Maystadt I
    Eur J Med Genet; 2018 Aug; 61(8):442-450. PubMed ID: 29510240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. WDR73 missense mutation causes infantile onset intellectual disability and cerebellar hypoplasia in a consanguineous family.
    Jiang C; Gai N; Zou Y; Zheng Y; Ma R; Wei X; Liang D; Wu L
    Clin Chim Acta; 2017 Jan; 464():24-29. PubMed ID: 27983999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 68.