These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Copper Redox Cycling Inhibits Aβ Fibre Formation and Promotes Fibre Fragmentation, while Generating a Dityrosine Aβ Dimer. Gu M; Bode DC; Viles JH Sci Rep; 2018 Nov; 8(1):16190. PubMed ID: 30385800 [TBL] [Abstract][Full Text] [Related]
3. Methionine 35 oxidation reduces fibril assembly of the amyloid abeta-(1-42) peptide of Alzheimer's disease. Hou L; Kang I; Marchant RE; Zagorski MG J Biol Chem; 2002 Oct; 277(43):40173-6. PubMed ID: 12198111 [TBL] [Abstract][Full Text] [Related]
4. Critical role of interfaces and agitation on the nucleation of Abeta amyloid fibrils at low concentrations of Abeta monomers. Morinaga A; Hasegawa K; Nomura R; Ookoshi T; Ozawa D; Goto Y; Yamada M; Naiki H Biochim Biophys Acta; 2010 Apr; 1804(4):986-95. PubMed ID: 20100601 [TBL] [Abstract][Full Text] [Related]
5. Oxidation of methionine 35 reduces toxicity of the amyloid beta-peptide(1-42) in neuroblastoma cells (IMR-32) via enzyme methionine sulfoxide reductase A expression and function. Misiti F; Clementi ME; Giardina B Neurochem Int; 2010 Mar; 56(4):597-602. PubMed ID: 20060866 [TBL] [Abstract][Full Text] [Related]
6. Methionine does not reduce Cu(II)-beta-amyloid!--rectification of the roles of methionine-35 and reducing agents in metal-centered oxidation chemistry of Cu(II)-beta-amyloid. da Silva GF; Lykourinou V; Angerhofer A; Ming LJ Biochim Biophys Acta; 2009 Jan; 1792(1):49-55. PubMed ID: 19061952 [TBL] [Abstract][Full Text] [Related]
7. Steady-state and time-resolved Thioflavin-T fluorescence can report on morphological differences in amyloid fibrils formed by Aβ(1-40) and Aβ(1-42). Lindberg DJ; Wranne MS; Gilbert Gatty M; Westerlund F; Esbjörner EK Biochem Biophys Res Commun; 2015 Mar; 458(2):418-23. PubMed ID: 25660454 [TBL] [Abstract][Full Text] [Related]
8. One-electron oxidation of beta-amyloid peptide: sequence modulation of reactivity. Kadlcik V; Sicard-Roselli C; Mattioli TA; Kodicek M; Houee-Levin C Free Radic Biol Med; 2004 Sep; 37(6):881-91. PubMed ID: 15706662 [TBL] [Abstract][Full Text] [Related]
9. Nitration of Tyrosine Residue Y10 of Aβ Zhao J; Wu J; Yang Z; Li H; Gao Z Chem Res Toxicol; 2017 Apr; 30(4):1085-1092. PubMed ID: 28272880 [TBL] [Abstract][Full Text] [Related]
10. A Comparison of Three Fluorophores for the Detection of Amyloid Fibers and Prefibrillar Oligomeric Assemblies. ThT (Thioflavin T); ANS (1-Anilinonaphthalene-8-sulfonic Acid); and bisANS (4,4'-Dianilino-1,1'-binaphthyl-5,5'-disulfonic Acid). Younan ND; Viles JH Biochemistry; 2015 Jul; 54(28):4297-306. PubMed ID: 26087242 [TBL] [Abstract][Full Text] [Related]
11. Modification of amyloid-β1-42 fibril structure by methionine-35 oxidation. Hou L; Lee HG; Han F; Tedesco JM; Perry G; Smith MA; Zagorski MG J Alzheimers Dis; 2013; 37(1):9-18. PubMed ID: 23719512 [TBL] [Abstract][Full Text] [Related]
13. Light-triggered dissociation of self-assembled β-amyloid aggregates into small, nontoxic fragments by ruthenium (II) complex. Son G; Lee BI; Chung YJ; Park CB Acta Biomater; 2018 Feb; 67():147-155. PubMed ID: 29221856 [TBL] [Abstract][Full Text] [Related]
14. Neurotoxic, redox-competent Alzheimer's beta-amyloid is released from lipid membrane by methionine oxidation. Barnham KJ; Ciccotosto GD; Tickler AK; Ali FE; Smith DG; Williamson NA; Lam YH; Carrington D; Tew D; Kocak G; Volitakis I; Separovic F; Barrow CJ; Wade JD; Masters CL; Cherny RA; Curtain CC; Bush AI; Cappai R J Biol Chem; 2003 Oct; 278(44):42959-65. PubMed ID: 12925530 [TBL] [Abstract][Full Text] [Related]
15. Simulations of monomeric amyloid β-peptide (1-40) with varying solution conditions and oxidation state of Met35: implications for aggregation. Brown AM; Lemkul JA; Schaum N; Bevan DR Arch Biochem Biophys; 2014 Mar; 545():44-52. PubMed ID: 24418316 [TBL] [Abstract][Full Text] [Related]
16. Role of glycine-33 and methionine-35 in Alzheimer's amyloid beta-peptide 1-42-associated oxidative stress and neurotoxicity. Kanski J; Varadarajan S; Aksenova M; Butterfield DA Biochim Biophys Acta; 2002 Mar; 1586(2):190-8. PubMed ID: 11959460 [TBL] [Abstract][Full Text] [Related]
17. A beta-amino acid modified heptapeptide containing a designed recognition element disrupts fibrillization of the amyloid beta-peptide. Castelletto V; Hamley IW; Lim T; De Tullio MB; Castaño EM J Pept Sci; 2010 Sep; 16(9):443-50. PubMed ID: 20648477 [TBL] [Abstract][Full Text] [Related]
19. Solution NMR studies of the A beta(1-40) and A beta(1-42) peptides establish that the Met35 oxidation state affects the mechanism of amyloid formation. Hou L; Shao H; Zhang Y; Li H; Menon NK; Neuhaus EB; Brewer JM; Byeon IJ; Ray DG; Vitek MP; Iwashita T; Makula RA; Przybyla AB; Zagorski MG J Am Chem Soc; 2004 Feb; 126(7):1992-2005. PubMed ID: 14971932 [TBL] [Abstract][Full Text] [Related]
20. Resveratrol inhibits beta-amyloid oligomeric cytotoxicity but does not prevent oligomer formation. Feng Y; Wang XP; Yang SG; Wang YJ; Zhang X; Du XT; Sun XX; Zhao M; Huang L; Liu RT Neurotoxicology; 2009 Nov; 30(6):986-95. PubMed ID: 19744518 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]