These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 27108968)

  • 1. Large gap electron-hole superfluidity and shape resonances in coupled graphene nanoribbons.
    Zarenia M; Perali A; Peeters FM; Neilson D
    Sci Rep; 2016 Apr; 6():24860. PubMed ID: 27108968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multicomponent Electron-Hole Superfluidity and the BCS-BEC Crossover in Double Bilayer Graphene.
    Conti S; Perali A; Peeters FM; Neilson D
    Phys Rev Lett; 2017 Dec; 119(25):257002. PubMed ID: 29303331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence from Quantum Monte Carlo Simulations of Large-Gap Superfluidity and BCS-BEC Crossover in Double Electron-Hole Layers.
    López Ríos P; Perali A; Needs RJ; Neilson D
    Phys Rev Lett; 2018 Apr; 120(17):177701. PubMed ID: 29756819
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of electron-hole superfluidity in double few-layer graphene.
    Zarenia M; Perali A; Neilson D; Peeters FM
    Sci Rep; 2014 Dec; 4():7319. PubMed ID: 25482584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electronic structure of atomically precise graphene nanoribbons.
    Ruffieux P; Cai J; Plumb NC; Patthey L; Prezzi D; Ferretti A; Molinari E; Feng X; Müllen K; Pignedoli CA; Fasel R
    ACS Nano; 2012 Aug; 6(8):6930-5. PubMed ID: 22853456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electronic and optical properties of graphene nanoribbons in external fields.
    Chung HC; Chang CP; Lin CY; Lin MF
    Phys Chem Chem Phys; 2016 Mar; 18(11):7573-616. PubMed ID: 26744847
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quasiparticle energies and band gaps in graphene nanoribbons.
    Yang L; Park CH; Son YW; Cohen ML; Louie SG
    Phys Rev Lett; 2007 Nov; 99(18):186801. PubMed ID: 17995426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploration of edge-dependent optical selection rules for graphene nanoribbons.
    Chung HC; Lee MH; Chang CP; Lin MF
    Opt Express; 2011 Nov; 19(23):23350-63. PubMed ID: 22109212
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhomogeneous phases in coupled electron-hole bilayer graphene sheets: Charge Density Waves and Coupled Wigner Crystals.
    Zarenia M; Neilson D; Peeters FM
    Sci Rep; 2017 Sep; 7(1):11510. PubMed ID: 28912465
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unveiling the magnetic structure of graphene nanoribbons.
    Ribeiro R; Poumirol JM; Cresti A; Escoffier W; Goiran M; Broto JM; Roche S; Raquet B
    Phys Rev Lett; 2011 Aug; 107(8):086601. PubMed ID: 21929185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of the particle-hole channel on BCS-Bose-Einstein condensation crossover in atomic Fermi gases.
    Chen Q
    Sci Rep; 2016 May; 6():25772. PubMed ID: 27183875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exciton-exciton annihilation and biexciton stimulated emission in graphene nanoribbons.
    Soavi G; Dal Conte S; Manzoni C; Viola D; Narita A; Hu Y; Feng X; Hohenester U; Molinari E; Prezzi D; Müllen K; Cerullo G
    Nat Commun; 2016 Mar; 7():11010. PubMed ID: 26984281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bose-Einstein condensation of quasiparticles in graphene.
    Berman OL; Kezerashvili RY; Lozovik YE
    Nanotechnology; 2010 Apr; 21(13):134019. PubMed ID: 20208112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Superfluidity in a gas of strongly interacting fermions.
    Ketterle W; Shin Y; Schirotzek A; Schunk CH
    J Phys Condens Matter; 2009 Apr; 21(16):164206. PubMed ID: 21825386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Superfluid transition in a rotating fermi gas with resonant interactions.
    Veillette MY; Sheehy DE; Radzihovsky L; Gurarie V
    Phys Rev Lett; 2006 Dec; 97(25):250401. PubMed ID: 17280330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of the fermion pair size in a resonantly interacting superfluid.
    Schunck CH; Shin YI; Schirotzek A; Ketterle W
    Nature; 2008 Aug; 454(7205):739-43. PubMed ID: 18685702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Graphene nanoribbons anchored to SiC substrates.
    Le NB; Woods LM
    J Phys Condens Matter; 2016 Sep; 28(36):364001. PubMed ID: 27392014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superconducting nanofilms: molecule-like pairing induced by quantum confinement.
    Chen Y; Shanenko AA; Perali A; Peeters FM
    J Phys Condens Matter; 2012 May; 24(18):185701. PubMed ID: 22481115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scaling of excitons in graphene nanoribbons with armchair shaped edges.
    Zhu X; Su H
    J Phys Chem A; 2011 Nov; 115(43):11998-2003. PubMed ID: 21939213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conductance signatures of electron confinement induced by strained nanobubbles in graphene.
    Bahamon DA; Qi Z; Park HS; Pereira VM; Campbell DK
    Nanoscale; 2015 Oct; 7(37):15300-9. PubMed ID: 26325579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.