These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 27109024)

  • 1. Bioavailability of milk protein-derived bioactive peptides: a glycaemic management perspective.
    Horner K; Drummond E; Brennan L
    Nutr Res Rev; 2016 Jun; 29(1):91-101. PubMed ID: 27109024
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Food protein hydrolysates as a source of dipeptidyl peptidase IV inhibitory peptides for the management of type 2 diabetes.
    Power O; Nongonierma AB; Jakeman P; FitzGerald RJ
    Proc Nutr Soc; 2014 Feb; 73(1):34-46. PubMed ID: 24131508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation into the bioavailability of milk protein-derived peptides with dipeptidyl-peptidase IV inhibitory activity using Caco-2 cell monolayers.
    Lacroix IME; Chen XM; Kitts DD; Li-Chan ECY
    Food Funct; 2017 Feb; 8(2):701-709. PubMed ID: 28098291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dipeptidyl peptidase-4 inhibitor treatment induces a greater increase in plasma levels of bioactive GIP than GLP-1 in non-diabetic subjects.
    Yanagimachi T; Fujita Y; Takeda Y; Honjo J; Sakagami H; Kitsunai H; Takiyama Y; Abiko A; Makino Y; Kieffer TJ; Haneda M
    Mol Metab; 2017 Feb; 6(2):226-231. PubMed ID: 28180064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Food protein-derived bioactive peptides in management of type 2 diabetes.
    Patil P; Mandal S; Tomar SK; Anand S
    Eur J Nutr; 2015 Sep; 54(6):863-80. PubMed ID: 26154777
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure activity relationship modelling of milk protein-derived peptides with dipeptidyl peptidase IV (DPP-IV) inhibitory activity.
    Nongonierma AB; FitzGerald RJ
    Peptides; 2016 May; 79():1-7. PubMed ID: 26988873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glucagon-like peptide 1 and gastric inhibitory polypeptide: potential applications in type 2 diabetes mellitus.
    Meier JJ; Gallwitz B; Nauck MA
    BioDrugs; 2003; 17(2):93-102. PubMed ID: 12641488
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Degradation of glucose-dependent insulinotropic polypeptide and truncated glucagon-like peptide 1 in vitro and in vivo by dipeptidyl peptidase IV.
    Kieffer TJ; McIntosh CH; Pederson RA
    Endocrinology; 1995 Aug; 136(8):3585-96. PubMed ID: 7628397
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of the cellular and biological properties of DPP-IV-resistant N-glucitol analogues of glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide.
    Green BD; Gault VA; O'Harte FP; Flatt PR
    Diabetes Obes Metab; 2005 Sep; 7(5):595-604. PubMed ID: 16050953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The biology of incretin hormones.
    Drucker DJ
    Cell Metab; 2006 Mar; 3(3):153-65. PubMed ID: 16517403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Susceptibility of milk protein-derived peptides to dipeptidyl peptidase IV (DPP-IV) hydrolysis.
    Nongonierma AB; FitzGerald RJ
    Food Chem; 2014 Feb; 145():845-52. PubMed ID: 24128555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [New therapeutic approach in patients with type 2 diabetes based on glucagon-like peptide 1 (GLP-1) and gastric inhibitory peptide (GIP)].
    Kluz J; Adamiec R
    Postepy Hig Med Dosw (Online); 2006; 60():15-23. PubMed ID: 16407790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [The incretin effect: a new therapeutic target in type 2 diabetes].
    Féry F
    Rev Med Brux; 2007 Sep; 28(4):329-35. PubMed ID: 17958029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biochemical and metabolic mechanisms by which dietary whey protein may combat obesity and Type 2 diabetes.
    Jakubowicz D; Froy O
    J Nutr Biochem; 2013 Jan; 24(1):1-5. PubMed ID: 22995389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glycaemic efficacy of glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors as add-on therapy to metformin in subjects with type 2 diabetes-a review and meta analysis.
    Deacon CF; Mannucci E; Ahrén B
    Diabetes Obes Metab; 2012 Aug; 14(8):762-7. PubMed ID: 22471248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peptide profiling and the bioactivity character of yogurt in the simulated gastrointestinal digestion.
    Jin Y; Yu Y; Qi Y; Wang F; Yan J; Zou H
    J Proteomics; 2016 Jun; 141():24-46. PubMed ID: 27108547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Incretin hormone mimetics and analogues in diabetes therapeutics.
    Green BD; Flatt PR
    Best Pract Res Clin Endocrinol Metab; 2007 Dec; 21(4):497-516. PubMed ID: 18054732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Analogs of glucagon-like peptide-1 (GLP-1): an old concept as a new treatment of patients with diabetes mellitus type 2].
    Diamant M; Bunck MC; Heine RJ
    Ned Tijdschr Geneeskd; 2004 Sep; 148(39):1912-7. PubMed ID: 15495988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Incretin enhancers, incretin mimetics: from therapeutic concept to clinical application].
    Winkler G
    Orv Hetil; 2007 Apr; 148(13):579-87. PubMed ID: 17383951
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GIP and GLP-1 as incretin hormones: lessons from single and double incretin receptor knockout mice.
    Hansotia T; Drucker DJ
    Regul Pept; 2005 Jun; 128(2):125-34. PubMed ID: 15780432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.