BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 27109029)

  • 1. Diabetic retinopathy and transcriptional regulation of a small molecular weight G-Protein, Rac1.
    Kowluru RA; Mishra M; Kumar B
    Exp Eye Res; 2016 Jun; 147():72-77. PubMed ID: 27109029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epigenetics and Regulation of Oxidative Stress in Diabetic Retinopathy.
    Duraisamy AJ; Mishra M; Kowluru A; Kowluru RA
    Invest Ophthalmol Vis Sci; 2018 Oct; 59(12):4831-4840. PubMed ID: 30347077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptor Protein p66Shc: A Link Between Cytosolic and Mitochondrial Dysfunction in the Development of Diabetic Retinopathy.
    Mishra M; Duraisamy AJ; Bhattacharjee S; Kowluru RA
    Antioxid Redox Signal; 2019 May; 30(13):1621-1634. PubMed ID: 30105917
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TIAM1-RAC1 signalling axis-mediated activation of NADPH oxidase-2 initiates mitochondrial damage in the development of diabetic retinopathy.
    Kowluru RA; Kowluru A; Veluthakal R; Mohammad G; Syed I; Santos JM; Mishra M
    Diabetologia; 2014 May; 57(5):1047-56. PubMed ID: 24554007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of PARP-1 as a novel transcriptional regulator of MMP-9 in diabetic retinopathy.
    Mishra M; Kowluru RA
    Biochim Biophys Acta Mol Basis Dis; 2017 Jul; 1863(7):1761-1769. PubMed ID: 28478229
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional Regulation of an Oxidative Stress Mediator, Rac1, in Diabetic Retinopathy.
    Mohammad G; Duraisamy AJ; Kowluru A; Kowluru RA
    Mol Neurobiol; 2019 Dec; 56(12):8643-8655. PubMed ID: 31300985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of Rac1 transcription by histone and DNA methylation in diabetic retinopathy.
    Kowluru RA; Radhakrishnan R; Mohammad G
    Sci Rep; 2021 Jul; 11(1):14097. PubMed ID: 34238980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular Mechanism of Transcriptional Regulation of Matrix Metalloproteinase-9 in Diabetic Retinopathy.
    Mishra M; Flaga J; Kowluru RA
    J Cell Physiol; 2016 Aug; 231(8):1709-18. PubMed ID: 26599598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of serine palmitoyl-transferase and Rac1-Nox2 signaling in diabetic retinopathy.
    Alka K; Mohammad G; Kowluru RA
    Sci Rep; 2022 Oct; 12(1):16740. PubMed ID: 36202842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sirt1, a negative regulator of matrix metalloproteinase-9 in diabetic retinopathy.
    Kowluru RA; Santos JM; Zhong Q
    Invest Ophthalmol Vis Sci; 2014 Jun; 55(9):5653-60. PubMed ID: 24894401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sirt1: A Guardian of the Development of Diabetic Retinopathy.
    Mishra M; Duraisamy AJ; Kowluru RA
    Diabetes; 2018 Apr; 67(4):745-754. PubMed ID: 29311218
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipotoxicity augments glucotoxicity-induced mitochondrial damage in the development of diabetic retinopathy.
    Kumar B; Kowluru A; Kowluru RA
    Invest Ophthalmol Vis Sci; 2015 May; 56(5):2985-92. PubMed ID: 26024084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diabetes regulates small molecular weight G-protein, H-Ras, in the microvasculature of the retina: implication in the development of retinopathy.
    Kanwar M; Kowluru RA
    Microvasc Res; 2008 Nov; 76(3):189-93. PubMed ID: 18514235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of matrix metalloproteinase-9 by epigenetic modifications and the development of diabetic retinopathy.
    Zhong Q; Kowluru RA
    Diabetes; 2013 Jul; 62(7):2559-68. PubMed ID: 23423566
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tiam1-Rac1 Axis Promotes Activation of p38 MAP Kinase in the Development of Diabetic Retinopathy: Evidence for a Requisite Role for Protein Palmitoylation.
    Veluthakal R; Kumar B; Mohammad G; Kowluru A; Kowluru RA
    Cell Physiol Biochem; 2015; 36(1):208-20. PubMed ID: 25967961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial fusion and maintenance of mitochondrial homeostasis in diabetic retinopathy.
    Duraisamy AJ; Mohammad G; Kowluru RA
    Biochim Biophys Acta Mol Basis Dis; 2019 Jun; 1865(6):1617-1626. PubMed ID: 30922813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Suppression of retinal peroxisome proliferator-activated receptor gamma in experimental diabetes and oxygen-induced retinopathy: role of NADPH oxidase.
    Tawfik A; Sanders T; Kahook K; Akeel S; Elmarakby A; Al-Shabrawey M
    Invest Ophthalmol Vis Sci; 2009 Feb; 50(2):878-84. PubMed ID: 18806296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extract of Polygonum cuspidatum Attenuates Diabetic Retinopathy by Inhibiting the High-Mobility Group Box-1 (HMGB1) Signaling Pathway in Streptozotocin-Induced Diabetic Rats.
    Sohn E; Kim J; Kim CS; Lee YM; Kim JS
    Nutrients; 2016 Mar; 8(3):140. PubMed ID: 26950148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of endoplasmic reticulum stress in 12/15-lipoxygenase-induced retinal microvascular dysfunction in a mouse model of diabetic retinopathy.
    Elmasry K; Ibrahim AS; Saleh H; Elsherbiny N; Elshafey S; Hussein KA; Al-Shabrawey M
    Diabetologia; 2018 May; 61(5):1220-1232. PubMed ID: 29468369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Re-institution of good metabolic control in diabetic rats and activation of caspase-3 and nuclear transcriptional factor (NF-kappaB) in the retina.
    Kowluru RA; Chakrabarti S; Chen S
    Acta Diabetol; 2004 Dec; 41(4):194-9. PubMed ID: 15660203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.