BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 27109029)

  • 21. The Regulatory Role of Rac1, a Small Molecular Weight GTPase, in the Development of Diabetic Retinopathy.
    Sahajpal N; Kowluru A; Kowluru RA
    J Clin Med; 2019 Jul; 8(7):. PubMed ID: 31277234
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of matrix metalloproteinase-9 in the development of diabetic retinopathy and its regulation by H-Ras.
    Kowluru RA
    Invest Ophthalmol Vis Sci; 2010 Aug; 51(8):4320-6. PubMed ID: 20220057
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of interleukin-1beta in the development of retinopathy in rats: effect of antioxidants.
    Kowluru RA; Odenbach S
    Invest Ophthalmol Vis Sci; 2004 Nov; 45(11):4161-6. PubMed ID: 15505070
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Activated microglia induce the production of reactive oxygen species and promote apoptosis of co-cultured retinal microvascular pericytes.
    Ding X; Zhang M; Gu R; Xu G; Wu H
    Graefes Arch Clin Exp Ophthalmol; 2017 Apr; 255(4):777-788. PubMed ID: 28074262
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Salicylate-based anti-inflammatory drugs inhibit the early lesion of diabetic retinopathy.
    Zheng L; Howell SJ; Hatala DA; Huang K; Kern TS
    Diabetes; 2007 Feb; 56(2):337-45. PubMed ID: 17259377
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Retinal mitochondrial DNA mismatch repair in the development of diabetic retinopathy, and its continued progression after termination of hyperglycemia.
    Mishra M; Kowluru RA
    Invest Ophthalmol Vis Sci; 2014 Sep; 55(10):6960-7. PubMed ID: 25249609
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Abrogation of MMP-9 gene protects against the development of retinopathy in diabetic mice by preventing mitochondrial damage.
    Kowluru RA; Mohammad G; dos Santos JM; Zhong Q
    Diabetes; 2011 Nov; 60(11):3023-33. PubMed ID: 21933988
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of mitochondria biogenesis in the metabolic memory associated with the continued progression of diabetic retinopathy and its regulation by lipoic acid.
    Santos JM; Kowluru RA
    Invest Ophthalmol Vis Sci; 2011 Nov; 52(12):8791-8. PubMed ID: 22003111
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of oxidative stress in epigenetic modification of MMP-9 promoter in the development of diabetic retinopathy.
    Kowluru RA; Shan Y
    Graefes Arch Clin Exp Ophthalmol; 2017 May; 255(5):955-962. PubMed ID: 28124145
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Epigenetic Modifications Compromise Mitochondrial DNA Quality Control in the Development of Diabetic Retinopathy.
    Mohammad G; Radhakrishnan R; Kowluru RA
    Invest Ophthalmol Vis Sci; 2019 Sep; 60(12):3943-3951. PubMed ID: 31546260
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The ethanol extract of Zingiber zerumbet rhizomes mitigates vascular lesions in the diabetic retina.
    Hong TY; Tzeng TF; Liou SS; Liu IM
    Vascul Pharmacol; 2016 Jan; 76():18-27. PubMed ID: 26319672
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Elevated Nε-(carboxymethyl)lysine is associated with apoptosis of retinal pericytes in streptozotocin-induced diabetic rats.
    Kim J; Kim CS; Sohn E; Kim JS
    Ophthalmic Res; 2011; 46(2):92-7. PubMed ID: 21273798
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Epigenetic changes in mitochondrial superoxide dismutase in the retina and the development of diabetic retinopathy.
    Zhong Q; Kowluru RA
    Diabetes; 2011 Apr; 60(4):1304-13. PubMed ID: 21357467
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Posttranslational modification of mitochondrial transcription factor A in impaired mitochondria biogenesis: implications in diabetic retinopathy and metabolic memory phenomenon.
    Santos JM; Mishra M; Kowluru RA
    Exp Eye Res; 2014 Apr; 121():168-77. PubMed ID: 24607487
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A compensatory mechanism protects retinal mitochondria from initial insult in diabetic retinopathy.
    Santos JM; Tewari S; Kowluru RA
    Free Radic Biol Med; 2012 Nov; 53(9):1729-37. PubMed ID: 22982046
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Deacetylation of MnSOD by PARP-regulated SIRT3 protects retinal capillary endothelial cells from hyperglycemia-induced damage.
    Gao J; Zheng Z; Gu Q; Chen X; Liu X; Xu X
    Biochem Biophys Res Commun; 2016 Apr; 472(3):425-31. PubMed ID: 26692487
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Retinal neuroprotective effects of quercetin in streptozotocin-induced diabetic rats.
    Kumar B; Gupta SK; Nag TC; Srivastava S; Saxena R; Jha KA; Srinivasan BP
    Exp Eye Res; 2014 Aug; 125():193-202. PubMed ID: 24952278
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Epigenetic Modification of Mitochondrial DNA in the Development of Diabetic Retinopathy.
    Mishra M; Kowluru RA
    Invest Ophthalmol Vis Sci; 2015 Aug; 56(9):5133-42. PubMed ID: 26241401
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Palmitate-induced apoptosis in cultured bovine retinal pericytes: roles of NAD(P)H oxidase, oxidant stress, and ceramide.
    Cacicedo JM; Benjachareowong S; Chou E; Ruderman NB; Ido Y
    Diabetes; 2005 Jun; 54(6):1838-45. PubMed ID: 15919807
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Impaired mitochondrial dynamics and removal of the damaged mitochondria in diabetic retinopathy.
    Alka K; Kumar J; Kowluru RA
    Front Endocrinol (Lausanne); 2023; 14():1160155. PubMed ID: 37415667
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.