BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 27109029)

  • 41. Effect of the regimen of Gaoshan Hongjingtian on the mechanism of poly (ADP-ribose) polymerase regulation of nuclear factor kappa B in the experimental diabetic retinopathy.
    Zhao HS; Shi XY; Wei WB; Wang NL
    Chin Med J (Engl); 2013; 126(9):1693-9. PubMed ID: 23652053
    [TBL] [Abstract][Full Text] [Related]  

  • 42. miR-124 Regulates Amadori-Glycated Albumin-Induced Retinal Microglial Activation and Inflammation by Targeting Rac1.
    Dong N; Xu B; Shi H; Lu Y
    Invest Ophthalmol Vis Sci; 2016 May; 57(6):2522-32. PubMed ID: 27159442
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Survivin contributes to the progression of diabetic retinopathy through HIF-1α pathway.
    Liu N; Zhao N; Chen L; Cai N
    Int J Clin Exp Pathol; 2015; 8(8):9161-7. PubMed ID: 26464661
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mitochondrial Genome-Encoded Long Noncoding RNA Cytochrome B and Mitochondrial Dysfunction in Diabetic Retinopathy.
    Mohammad G; Kumar J; Kowluru RA
    Antioxid Redox Signal; 2023 Nov; 39(13-15):817-828. PubMed ID: 37464864
    [No Abstract]   [Full Text] [Related]  

  • 45. HMGB1 siRNA can reduce damage to retinal cells induced by high glucose in vitro and in vivo.
    Jiang S; Chen X
    Drug Des Devel Ther; 2017; 11():783-795. PubMed ID: 28352154
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Rac1 signalling mediates doxorubicin-induced cardiotoxicity through both reactive oxygen species-dependent and -independent pathways.
    Ma J; Wang Y; Zheng D; Wei M; Xu H; Peng T
    Cardiovasc Res; 2013 Jan; 97(1):77-87. PubMed ID: 23027656
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Loss of insulin-mediated vasoprotection: early effect of diabetes on pericyte-containing microvessels of the retina.
    Kobayashi T; Puro DG
    Invest Ophthalmol Vis Sci; 2007 May; 48(5):2350-5. PubMed ID: 17460301
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Role of alpha 4 integrin (CD49d) in the pathogenesis of diabetic retinopathy.
    Iliaki E; Poulaki V; Mitsiades N; Mitsiades CS; Miller JW; Gragoudas ES
    Invest Ophthalmol Vis Sci; 2009 Oct; 50(10):4898-904. PubMed ID: 19553613
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Experimental study of the protective effects of SYVN1 against diabetic retinopathy.
    Yang S; He H; Ma QS; Zhang Y; Zhu Y; Wan X; Wang FW; Wang SS; Liu L; Li B
    Sci Rep; 2015 Sep; 5():14036. PubMed ID: 26358086
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Homocysteine Disrupts Balance between MMP-9 and Its Tissue Inhibitor in Diabetic Retinopathy: The Role of DNA Methylation.
    Mohammad G; Kowluru RA
    Int J Mol Sci; 2020 Mar; 21(5):. PubMed ID: 32150828
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effect of R-(+)-alpha-lipoic acid on experimental diabetic retinopathy.
    Lin J; Bierhaus A; Bugert P; Dietrich N; Feng Y; Vom Hagen F; Nawroth P; Brownlee M; Hammes HP
    Diabetologia; 2006 May; 49(5):1089-96. PubMed ID: 16520919
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Astrocyte GGTI-mediated Rac1 prenylation upregulates NF-κB expression and promotes neuronal apoptosis following hypoxia/ischemia.
    Gao S; Mo J; Chen L; Wang Y; Mao X; Shi Y; Zhang X; Yu R; Zhou X
    Neuropharmacology; 2016 Apr; 103():44-56. PubMed ID: 26690896
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Polyphenol-enriched cocoa protects the diabetic retina from glial reaction through the sirtuin pathway.
    Duarte DA; Rosales MA; Papadimitriou A; Silva KC; Amancio VH; Mendonça JN; Lopes NP; de Faria JB; de Faria JM
    J Nutr Biochem; 2015 Jan; 26(1):64-74. PubMed ID: 25448608
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effect of obtusifolin administration on retinal capillary cell death and the development of retinopathy in diabetic rats.
    Hou B; He S; Gong Y; Li Z
    Cell Biochem Biophys; 2014 Dec; 70(3):1655-61. PubMed ID: 25030406
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Oxidative damage in the retinal mitochondria of diabetic mice: possible protection by superoxide dismutase.
    Kanwar M; Chan PS; Kern TS; Kowluru RA
    Invest Ophthalmol Vis Sci; 2007 Aug; 48(8):3805-11. PubMed ID: 17652755
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Aquaporin 4 knockdown exacerbates streptozotocin-induced diabetic retinopathy through aggravating inflammatory response.
    Cui B; Sun JH; Xiang FF; Liu L; Li WJ
    Exp Eye Res; 2012 May; 98():37-43. PubMed ID: 22449442
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Antioxidant-Rich Extract from Plantaginis Semen Ameliorates Diabetic Retinal Injury in a Streptozotocin-Induced Diabetic Rat Model.
    Tzeng TF; Liu WY; Liou SS; Hong TY; Liu IM
    Nutrients; 2016 Sep; 8(9):. PubMed ID: 27649243
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mutual enhancement between high-mobility group box-1 and NADPH oxidase-derived reactive oxygen species mediates diabetes-induced upregulation of retinal apoptotic markers.
    Mohammad G; Alam K; Nawaz MI; Siddiquei MM; Mousa A; Abu El-Asrar AM
    J Physiol Biochem; 2015 Sep; 71(3):359-72. PubMed ID: 26040511
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Role of mitochondrial superoxide dismutase in the development of diabetic retinopathy.
    Kowluru RA; Atasi L; Ho YS
    Invest Ophthalmol Vis Sci; 2006 Apr; 47(4):1594-9. PubMed ID: 16565397
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Interrelationship between activation of matrix metalloproteinases and mitochondrial dysfunction in the development of diabetic retinopathy.
    Santos JM; Tewari S; Lin JY; Kowluru RA
    Biochem Biophys Res Commun; 2013 Sep; 438(4):760-4. PubMed ID: 23891690
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.