BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 27109190)

  • 21. Comparison of a Commercial Accelerometer with Polysomnography and Actigraphy in Children and Adolescents.
    Meltzer LJ; Hiruma LS; Avis K; Montgomery-Downs H; Valentin J
    Sleep; 2015 Aug; 38(8):1323-30. PubMed ID: 26118555
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison of 7 versus 14 days wrist actigraphy monitoring in a sleep disorders clinic population.
    Briscoe S; Hardy E; Pengo MF; Kosky C; Williams AJ; Hart N; Steier J
    Chronobiol Int; 2014 Apr; 31(3):356-62. PubMed ID: 24304408
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Actigraphy correctly predicts sleep behavior in infants who are younger than six months, when compared with polysomnography.
    So K; Buckley P; Adamson TM; Horne RS
    Pediatr Res; 2005 Oct; 58(4):761-5. PubMed ID: 16189206
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluation of human activities and sleep-wake identification using wrist actigraphy.
    Shinkoda H; Matsumoto K; Hamasaki J; Seo YJ; Park YM; Park KP
    Psychiatry Clin Neurosci; 1998 Apr; 52(2):157-9. PubMed ID: 9628125
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Validation of actigraphy for determining sleep and wake in preterm infants.
    Sung M; Adamson TM; Horne RS
    Acta Paediatr; 2009 Jan; 98(1):52-7. PubMed ID: 18754828
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sleep and wake classification with actigraphy and respiratory effort using dynamic warping.
    Long X; Fonseca P; Foussier J; Haakma R; Aarts RM
    IEEE J Biomed Health Inform; 2014 Jul; 18(4):1272-84. PubMed ID: 24108754
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of a novel non-contact biomotion sensor with wrist actigraphy in estimating sleep quality in patients with obstructive sleep apnoea.
    Pallin M; O'Hare E; Zaffaroni A; Boyle P; Fagan C; Kent B; Heneghan C; de Chazal P; McNicholas WT
    J Sleep Res; 2014 Aug; 23(4):475-84. PubMed ID: 24495222
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Algorithms for using an activity-based accelerometer for identification of infant sleep-wake states during nap studies.
    Galland BC; Kennedy GJ; Mitchell EA; Taylor BJ
    Sleep Med; 2012 Jun; 13(6):743-51. PubMed ID: 22542788
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Validation of actigraphy with continuous video-electroencephalography in children with epilepsy.
    Sadaka Y; Sadeh A; Bradbury L; Massicotte C; Zak M; Go C; Shorer Z; Weiss SK
    Sleep Med; 2014 Sep; 15(9):1075-81. PubMed ID: 24974198
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of Motionlogger Watch and Actiwatch actigraphs to polysomnography for sleep/wake estimation in healthy young adults.
    Rupp TL; Balkin TJ
    Behav Res Methods; 2011 Dec; 43(4):1152-60. PubMed ID: 21512871
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High altitude sleep disturbances monitored by actigraphy and polysomnography.
    Nussbaumer-Ochsner Y; Schuepfer N; Siebenmann C; Maggiorini M; Bloch KE
    High Alt Med Biol; 2011; 12(3):229-36. PubMed ID: 21962066
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Actigraphy is not a reliable method for measuring sleep patterns in neonates.
    Rioualen S; Roué JM; Lefranc J; Gouillou M; Nowak E; Alavi Z; Dubourg M; Sizun J
    Acta Paediatr; 2015 Nov; 104(11):e478-82. PubMed ID: 26081297
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Differences Between Sleep Logs and Actigraphy Combined With Electroencephalography in Adults With Sleep Disturbances.
    Chang ET; Huang CY; Lai HL
    Biol Res Nurs; 2018 Jan; 20(1):77-83. PubMed ID: 28868902
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sleep-wake detection using recurrence quantification analysis.
    Parro VC; Valdo L
    Chaos; 2018 Aug; 28(8):085706. PubMed ID: 30180645
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of actigraphy immobility rules with polysomnographic sleep onset latency in children and adolescents.
    Meltzer LJ; Walsh CM; Peightal AA
    Sleep Breath; 2015 Dec; 19(4):1415-23. PubMed ID: 25687438
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparison between informant-observed and actigraphic assessments of sleep-wake rhythm disturbances in demented residents of homes for the elderly.
    Hoekert M; der Lek RF; Swaab DF; Kaufer D; Van Someren EJ
    Am J Geriatr Psychiatry; 2006 Feb; 14(2):104-11. PubMed ID: 16473974
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Validation of Contact-Free Sleep Monitoring Device with Comparison to Polysomnography.
    Tal A; Shinar Z; Shaki D; Codish S; Goldbart A
    J Clin Sleep Med; 2017 Mar; 13(3):517-522. PubMed ID: 27998378
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reliability of Sleep Measures from Four Personal Health Monitoring Devices Compared to Research-Based Actigraphy and Polysomnography.
    Mantua J; Gravel N; Spencer RM
    Sensors (Basel); 2016 May; 16(5):. PubMed ID: 27164110
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ambulatory circadian monitoring (ACM) based on thermometry, motor activity and body position (TAP): a comparison with polysomnography.
    Ortiz-Tudela E; Martinez-Nicolas A; Albares J; Segarra F; Campos M; Estivill E; Rol MA; Madrid JA
    Physiol Behav; 2014 Mar; 126():30-8. PubMed ID: 24398067
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Wrist actigraphy in estimation of sleep and wake in intellectually disabled subjects with motor handicaps.
    Laakso ML; Leinonen L; Lindblom N; Joutsiniemi SL; Kaski M
    Sleep Med; 2004 Nov; 5(6):541-50. PubMed ID: 15511700
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.