These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 27109706)

  • 41. Tibiofemoral joint forces during isokinetic knee extension.
    Nisell R; Ericson MO; Németh G; Ekholm J
    Am J Sports Med; 1989; 17(1):49-54. PubMed ID: 2929836
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A Multibody Knee Model Corroborates Subject-Specific Experimental Measurements of Low Ligament Forces and Kinematic Coupling During Passive Flexion.
    Kia M; Schafer K; Lipman J; Cross M; Mayman D; Pearle A; Wickiewicz T; Imhauser C
    J Biomech Eng; 2016 May; 138(5):051010. PubMed ID: 26926010
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The relationship between tibiofemoral geometry and musculoskeletal function during normal activity.
    Martelli S; Sancisi N; Conconi M; Pandy MG; Kersh ME; Parenti-Castelli V; Reynolds KJ
    Gait Posture; 2020 Jul; 80():374-382. PubMed ID: 32622207
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A Comprehensive Specimen-Specific Multiscale Data Set for Anatomical and Mechanical Characterization of the Tibiofemoral Joint.
    Chokhandre S; Colbrunn R; Bennetts C; Erdemir A
    PLoS One; 2015; 10(9):e0138226. PubMed ID: 26381404
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Design and validation of an unconstrained loading system to measure the envelope of motion in the rabbit knee joint.
    Milne AD; Giffin JR; Chess DG; Johnson JA; King GJ
    J Biomech Eng; 2001 Aug; 123(4):347-54. PubMed ID: 11563760
    [TBL] [Abstract][Full Text] [Related]  

  • 46. ACL Reconstruction Decision Support. Personalized Simulation of the Lachman Test and Custom Activities.
    Stanev D; Moustakas K; Gliatis J; Koutsojannis C
    Methods Inf Med; 2016; 55(1):98-105. PubMed ID: 26666353
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Load analysis of a patellofemoral joint by a quadriceps muscle.
    Ciszkiewicz A; Knapczyk J
    Acta Bioeng Biomech; 2016; 18(2):111-9. PubMed ID: 27405662
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A six-degree-of-freedom acoustic transducer for rotation and translation measurements across the knee.
    Quinn TP; Mote CD
    J Biomech Eng; 1990 Nov; 112(4):371-8. PubMed ID: 2273862
    [TBL] [Abstract][Full Text] [Related]  

  • 49. 'Equivalent geometry' of the knee and the prediction of tensions along the cruciates: an experimental study.
    Chan SC; Seedhom BB
    J Biomech; 1999 Jan; 32(1):35-48. PubMed ID: 10050950
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Validated Computational Framework for Evaluation of In Vivo Knee Mechanics.
    Ali AA; Mannen EM; Rullkoetter PJ; Shelburne KB
    J Biomech Eng; 2020 Aug; 142(8):. PubMed ID: 31913450
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The effect of test methodology on apparent compressive stiffness of tibiofemoral joint specimens.
    Anderson DR; Newman AP; Daniels AU
    J Biomech; 1991; 24(7):631-5. PubMed ID: 1880146
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Knee Kinematics Estimation Using Multi-Body Optimisation Embedding a Knee Joint Stiffness Matrix: A Feasibility Study.
    Richard V; Lamberto G; Lu TW; Cappozzo A; Dumas R
    PLoS One; 2016; 11(6):e0157010. PubMed ID: 27314586
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A noninvasive MRI based approach to estimate the mechanical properties of human knee ligaments.
    Naghibi H; Mazzoli V; Gijsbertse K; Hannink G; Sprengers A; Janssen D; Van den Boogaard T; Verdonschot N
    J Mech Behav Biomed Mater; 2019 May; 93():43-51. PubMed ID: 30769233
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Subject-Specific Finite Element Models of the Tibia With Realistic Boundary Conditions Predict Bending Deformations Consistent With In Vivo Measurement.
    Haider IT; Baggaley M; Edwards WB
    J Biomech Eng; 2020 Feb; 142(2):. PubMed ID: 31201743
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Measuring relative positions and orientations of the tibia with respect to the femur using one-channel 3D-tracked A-mode ultrasound tracking system: A cadaveric study.
    Niu K; Homminga J; Sluiter V; Sprengers A; Verdonschot N
    Med Eng Phys; 2018 Jul; 57():61-68. PubMed ID: 29759948
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Response of a two-dimensional dynamic model of the human knee to the externally applied forces and moments.
    Moeinzadeh MH; Engin AE
    J Biomed Eng; 1983 Oct; 5(4):281-91. PubMed ID: 6632839
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Muscular and tibiofemoral joint forces during isokinetic concentric knee extension.
    Baltzopoulos V
    Clin Biomech (Bristol, Avon); 1995 Jun; 10(4):208-214. PubMed ID: 11415554
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A generalized framework for determination of functional musculoskeletal joint coordinate systems.
    Nagle TF; Erdemir A; Colbrunn RW
    J Biomech; 2021 Oct; 127():110664. PubMed ID: 34399244
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Internal Tibial Forces and Moments During Graded Running.
    Baggaley M; Derrick TR; Vernillo G; Millet GY; Edwards WB
    J Biomech Eng; 2022 Jan; 144(1):. PubMed ID: 34318310
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A method for quantifying the anterior load-displacement behavior of the human knee in both the low and high stiffness regions.
    Eagar P; Hull ML; Howell SM
    J Biomech; 2001 Dec; 34(12):1655-60. PubMed ID: 11716869
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.