BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 27109753)

  • 1. Relationships of human α/β hydrolase fold proteins and other organophosphate-interacting proteins.
    Lenfant N; Bourne Y; Marchot P; Chatonnet A
    Chem Biol Interact; 2016 Nov; 259(Pt B):343-351. PubMed ID: 27109753
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New insights on molecular interactions of organophosphorus pesticides with esterases.
    Mangas I; Estevez J; Vilanova E; França TC
    Toxicology; 2017 Feb; 376():30-43. PubMed ID: 27311923
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Review of tyrosine and lysine as new motifs for organophosphate binding to proteins that have no active site serine.
    Lockridge O; Schopfer LM
    Chem Biol Interact; 2010 Sep; 187(1-3):344-8. PubMed ID: 20211158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular binding of different classes of organophosphates to methyl parathion hydrolase from Ochrobactrum species.
    Bhat N; Nutho B; Hanpaibool C; Hadsadee S; Vangnai A; Rungrotmongkol T
    Proteins; 2024 Jan; 92(1):96-105. PubMed ID: 37646471
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A mechanism-based 3D-QSAR approach for classification and prediction of acetylcholinesterase inhibitory potency of organophosphate and carbamate analogs.
    Lee S; Barron MG
    J Comput Aided Mol Des; 2016 Apr; 30(4):347-63. PubMed ID: 27055524
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alpha/Beta-hydrolase fold enzymes: structures, functions and mechanisms.
    Holmquist M
    Curr Protein Pept Sci; 2000 Sep; 1(2):209-35. PubMed ID: 12369917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure Dependent Determination of Organophosphate Targets in Mammalian Tissues Using Activity-Based Protein Profiling.
    Lin VS; Volk RF; DeLeon AJ; Anderson LN; Purvine SO; Shukla AK; Bernstein HC; Smith JN; Wright AT
    Chem Res Toxicol; 2020 Feb; 33(2):414-425. PubMed ID: 31872761
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomolecular engineering of biocatalysts hydrolyzing neurotoxic organophosphates.
    Lyagin IV; Efremenko EN
    Biochimie; 2018 Jan; 144():115-121. PubMed ID: 29097283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Each lipase has a unique sensitivity profile for organophosphorus inhibitors.
    Quistad GB; Liang SN; Fisher KJ; Nomura DK; Casida JE
    Toxicol Sci; 2006 May; 91(1):166-72. PubMed ID: 16449251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-throughput screening system based on phenolics-responsive transcription activator for directed evolution of organophosphate-degrading enzymes.
    Jeong YS; Choi SL; Kyeong HH; Kim JH; Kim EJ; Pan JG; Rha E; Song JJ; Lee SG; Kim HS
    Protein Eng Des Sel; 2012 Nov; 25(11):725-31. PubMed ID: 23077277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shielded α-Nucleophile Nanoreactor for Topical Decontamination of Reactive Organophosphate.
    Wong PT; Tang S; Cannon J; Yang K; Harrison R; Ruge M; O'Konek JJ; Choi SK
    ACS Appl Mater Interfaces; 2020 Jul; 12(30):33500-33515. PubMed ID: 32603588
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical Mechanism of the Phosphotriesterase from Sphingobium sp. Strain TCM1, an Enzyme Capable of Hydrolyzing Organophosphate Flame Retardants.
    Bigley AN; Xiang DF; Ren Z; Xue H; Hull KG; Romo D; Raushel FM
    J Am Chem Soc; 2016 Mar; 138(9):2921-4. PubMed ID: 26907457
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Altering the substrate specificity of methyl parathion hydrolase with directed evolution.
    Ng TK; Gahan LR; Schenk G; Ollis DL
    Arch Biochem Biophys; 2015 May; 573():59-68. PubMed ID: 25797441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The α/β Hydrolase Fold Proteins of Mycobacterium tuberculosis, with Reference to their Contribution to Virulence.
    Johnson G
    Curr Protein Pept Sci; 2017; 18(3):190-210. PubMed ID: 27480283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteins with an alpha/beta hydrolase fold: Relationships between subfamilies in an ever-growing superfamily.
    Lenfant N; Hotelier T; Bourne Y; Marchot P; Chatonnet A
    Chem Biol Interact; 2013 Mar; 203(1):266-8. PubMed ID: 23010363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel organophosphate hydrolase from Arthrobacter sp. HM01: Characterization and applications.
    Mali H; Shah C; Rudakiya DM; Patel DH; Trivedi U; Subramanian RB
    Bioresour Technol; 2022 Apr; 349():126870. PubMed ID: 35192947
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Serine hydrolase targets of organophosphorus toxicants.
    Casida JE; Quistad GB
    Chem Biol Interact; 2005 Dec; 157-158():277-83. PubMed ID: 16243304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An isofenphos-methyl hydrolase (Imh) capable of hydrolyzing the P-O-Z moiety of organophosphorus pesticides containing an aryl or heterocyclic group.
    Li R; Liu Y; Zhang J; Chen K; Li S; Jiang J
    Appl Microbiol Biotechnol; 2012 Jun; 94(6):1553-64. PubMed ID: 22120622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein domain of unknown function DUF1023 is an alpha/beta hydrolase.
    Zheng M; Ginalski K; Rychlewski L; Grishin NV
    Proteins; 2005 Apr; 59(1):1-6. PubMed ID: 15688435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of a general base mechanism for ester hydrolysis in C-C hydrolase enzymes of the alpha/beta-hydrolase superfamily: a novel mechanism for the serine catalytic triad.
    Li JJ; Bugg TD
    Org Biomol Chem; 2007 Feb; 5(3):507-13. PubMed ID: 17252134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.