BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 27109928)

  • 1. Thiol reductive stress induces cellulose-anchored biofilm formation in Mycobacterium tuberculosis.
    Trivedi A; Mavi PS; Bhatt D; Kumar A
    Nat Commun; 2016 Apr; 7():11392. PubMed ID: 27109928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Media component bovine serum albumin facilitates the formation of mycobacterial biofilms in response to reductive stress.
    Mavi PS; Singh S; Kumar A
    BMC Microbiol; 2023 Apr; 23(1):111. PubMed ID: 37081437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The extracellular matrix of mycobacterial biofilms: could we shorten the treatment of mycobacterial infections?
    Chakraborty P; Kumar A
    Microb Cell; 2019 Jan; 6(2):105-122. PubMed ID: 30740456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. House of cellulose - a new hideout for drug tolerant
    Kumar A
    Microb Cell; 2016 Jun; 3(7):299-301. PubMed ID: 28357368
    [No Abstract]   [Full Text] [Related]  

  • 5. Biofilm formation in the lung contributes to virulence and drug tolerance of Mycobacterium tuberculosis.
    Chakraborty P; Bajeli S; Kaushal D; Radotra BD; Kumar A
    Nat Commun; 2021 Mar; 12(1):1606. PubMed ID: 33707445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioenergetic Heterogeneity in Mycobacterium tuberculosis Residing in Different Subcellular Niches.
    Akela AK; Kumar A
    mBio; 2021 Jun; 12(3):e0108821. PubMed ID: 34060333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth of Mycobacterium tuberculosis biofilms containing free mycolic acids and harbouring drug-tolerant bacteria.
    Ojha AK; Baughn AD; Sambandan D; Hsu T; Trivelli X; Guerardel Y; Alahari A; Kremer L; Jacobs WR; Hatfull GF
    Mol Microbiol; 2008 Jul; 69(1):164-74. PubMed ID: 18466296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of a mycobacterial cellulase and its impact on biofilm- and drug-induced cellulose production.
    Van Wyk N; Navarro D; Blaise M; Berrin JG; Henrissat B; Drancourt M; Kremer L
    Glycobiology; 2017 May; 27(5):392-399. PubMed ID: 28168306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression of Mycobacterium tuberculosis NLPC/p60 family protein Rv0024 induce biofilm formation and resistance against cell wall acting anti-tuberculosis drugs in Mycobacterium smegmatis.
    Padhi A; Naik SK; Sengupta S; Ganguli G; Sonawane A
    Microbes Infect; 2016 Apr; 18(4):224-36. PubMed ID: 26706821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anaerobic Mycobacterium tuberculosis Cell Death Stems from Intracellular Acidification Mitigated by the DosR Regulon.
    Reichlen MJ; Leistikow RL; Scobey MS; Born SEM; Voskuil MI
    J Bacteriol; 2017 Dec; 199(23):. PubMed ID: 28874407
    [No Abstract]   [Full Text] [Related]  

  • 11. Transient drug-tolerance and permanent drug-resistance rely on the trehalose-catalytic shift in Mycobacterium tuberculosis.
    Lee JJ; Lee SK; Song N; Nathan TO; Swarts BM; Eum SY; Ehrt S; Cho SN; Eoh H
    Nat Commun; 2019 Jul; 10(1):2928. PubMed ID: 31266959
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting drug tolerance in mycobacteria: a perspective from mycobacterial biofilms.
    Islam MS; Richards JP; Ojha AK
    Expert Rev Anti Infect Ther; 2012 Sep; 10(9):1055-66. PubMed ID: 23106280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptation of Mycobacterium tuberculosis to Biofilm Growth Is Genetically Linked to Drug Tolerance.
    Richards JP; Cai W; Zill NA; Zhang W; Ojha AK
    Antimicrob Agents Chemother; 2019 Nov; 63(11):. PubMed ID: 31501144
    [No Abstract]   [Full Text] [Related]  

  • 14. Metabolically distinct roles of NAD synthetase and NAD kinase define the essentiality of NAD and NADP in
    Sharma R; Hartman TE; Beites T; Kim JH; Eoh H; Engelhart CA; Zhu L; Wilson DJ; Aldrich CC; Ehrt S; Rhee KY; Schnappinger D
    mBio; 2023 Aug; 14(4):e0034023. PubMed ID: 37350592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression and molecular characterization of the Mycobacterium tuberculosis PII protein.
    Bandyopadhyay A; Arora A; Jain S; Laskar A; Mandal C; Ivanisenko VA; Fomin ES; Pintus SS; Kolchanov NA; Maiti S; Ramachandran S
    J Biochem; 2010 Feb; 147(2):279-89. PubMed ID: 19884192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pili contribute to biofilm formation in vitro in Mycobacterium tuberculosis.
    Ramsugit S; Guma S; Pillay B; Jain P; Larsen MH; Danaviah S; Pillay M
    Antonie Van Leeuwenhoek; 2013 Nov; 104(5):725-35. PubMed ID: 23907521
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mycobacterium biofilms: factors involved in development, dispersal, and therapeutic strategies against biofilm-relevant pathogens.
    Xiang X; Deng W; Liu M; Xie J
    Crit Rev Eukaryot Gene Expr; 2014; 24(3):269-79. PubMed ID: 25072151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptional Adaptation of Drug-tolerant Mycobacterium tuberculosis During Treatment of Human Tuberculosis.
    Walter ND; Dolganov GM; Garcia BJ; Worodria W; Andama A; Musisi E; Ayakaka I; Van TT; Voskuil MI; de Jong BC; Davidson RM; Fingerlin TE; Kechris K; Palmer C; Nahid P; Daley CL; Geraci M; Huang L; Cattamanchi A; Strong M; Schoolnik GK; Davis JL
    J Infect Dis; 2015 Sep; 212(6):990-8. PubMed ID: 25762787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of lipid biosynthesis, sliding motility, and biofilm formation by a membrane-anchored nucleoid-associated protein of Mycobacterium tuberculosis.
    Ghosh S; Indi SS; Nagaraja V
    J Bacteriol; 2013 Apr; 195(8):1769-78. PubMed ID: 23396914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Imaging the NADH:NAD
    Bhat SA; Iqbal IK; Kumar A
    Front Cell Infect Microbiol; 2016; 6():145. PubMed ID: 27878107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.