BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 27109935)

  • 1. Pan-cancer subtyping in a 2D-map shows substructures that are driven by specific combinations of molecular characteristics.
    Taskesen E; Huisman SM; Mahfouz A; Krijthe JH; de Ridder J; van de Stolpe A; van den Akker E; Verheagh W; Reinders MJ
    Sci Rep; 2016 Apr; 6():24949. PubMed ID: 27109935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-omic tumor data reveal diversity of molecular mechanisms that correlate with survival.
    Ramazzotti D; Lal A; Wang B; Batzoglou S; Sidow A
    Nat Commun; 2018 Oct; 9(1):4453. PubMed ID: 30367051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of the Prognostic Utility of the Diverse Molecular Data among lncRNA, DNA Methylation, microRNA, and mRNA across Five Human Cancers.
    Xu L; Fengji L; Changning L; Liangcai Z; Yinghui L; Yu L; Shanguang C; Jianghui X
    PLoS One; 2015; 10(11):e0142433. PubMed ID: 26606135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Survival differences of CIMP subtypes integrated with CNA information in human breast cancer.
    Wang H; Yan W; Zhang S; Gu Y; Wang Y; Wei Y; Liu H; Wang F; Wu Q; Zhang Y
    Oncotarget; 2017 Jul; 8(30):48807-48819. PubMed ID: 28415743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. OncoScape: Exploring the cancer aberration landscape by genomic data fusion.
    Schlicker A; Michaut M; Rahman R; Wessels LF
    Sci Rep; 2016 Jun; 6():28103. PubMed ID: 27321817
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide DNA methylation analysis reveals molecular subtypes of pancreatic cancer.
    Mishra NK; Guda C
    Oncotarget; 2017 Apr; 8(17):28990-29012. PubMed ID: 28423671
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel approach for data integration and disease subtyping.
    Nguyen T; Tagett R; Diaz D; Draghici S
    Genome Res; 2017 Dec; 27(12):2025-2039. PubMed ID: 29066617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The molecular landscape of premenopausal breast cancer.
    Liao S; Hartmaier RJ; McGuire KP; Puhalla SL; Luthra S; Chandran UR; Ma T; Bhargava R; Modugno F; Davidson NE; Benz S; Lee AV; Tseng GC; Oesterreich S
    Breast Cancer Res; 2015 Aug; 17():104. PubMed ID: 26251034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pan-cancer analysis of frequent DNA co-methylation patterns reveals consistent epigenetic landscape changes in multiple cancers.
    Zhang J; Huang K
    BMC Genomics; 2017 Jan; 18(Suppl 1):1045. PubMed ID: 28198667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular subtyping of cancer: current status and moving toward clinical applications.
    Zhao L; Lee VHF; Ng MK; Yan H; Bijlsma MF
    Brief Bioinform; 2019 Mar; 20(2):572-584. PubMed ID: 29659698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MethCNA: a database for integrating genomic and epigenomic data in human cancer.
    Deng G; Yang J; Zhang Q; Xiao ZX; Cai H
    BMC Genomics; 2018 Feb; 19(1):138. PubMed ID: 29433427
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A systematic comparison of copy number alterations in four types of female cancer.
    Kaveh F; Baumbusch LO; Nebdal D; Børresen-Dale AL; Lingjærde OC; Edvardsen H; Kristensen VN; Solvang HK
    BMC Cancer; 2016 Nov; 16(1):913. PubMed ID: 27876019
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-wide DNA methylation analysis of lung carcinoma reveals one neuroendocrine and four adenocarcinoma epitypes associated with patient outcome.
    Karlsson A; Jönsson M; Lauss M; Brunnström H; Jönsson P; Borg Å; Jönsson G; Ringnér M; Planck M; Staaf J
    Clin Cancer Res; 2014 Dec; 20(23):6127-40. PubMed ID: 25278450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comprehensive genomic pan-cancer classification using The Cancer Genome Atlas gene expression data.
    Li Y; Kang K; Krahn JM; Croutwater N; Lee K; Umbach DM; Li L
    BMC Genomics; 2017 Jul; 18(1):508. PubMed ID: 28673244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Network-based analysis for identification of candidate genes for colorectal cancer progression.
    Tsuji S; Midorikawa Y; Seki M; Takayama T; Sugiyama Y; Aburatani H
    Biochem Biophys Res Commun; 2016 Aug; 476(4):534-540. PubMed ID: 27255996
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-omic signatures identify pan-cancer classes of tumors beyond tissue of origin.
    González-Reymúndez A; Vázquez AI
    Sci Rep; 2020 May; 10(1):8341. PubMed ID: 32433524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Data Mining Approaches for Genomic Biomarker Development: Applications Using Drug Screening Data from the Cancer Genome Project and the Cancer Cell Line Encyclopedia.
    Covell DG
    PLoS One; 2015; 10(7):e0127433. PubMed ID: 26132924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of driver copy number alterations in diverse cancer types and application in drug repositioning.
    Zhou W; Zhao Z; Wang R; Han Y; Wang C; Yang F; Han Y; Liang H; Qi L; Wang C; Guo Z; Gu Y
    Mol Oncol; 2017 Oct; 11(10):1459-1474. PubMed ID: 28719033
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying molecular subtypes in human colon cancer using gene expression and DNA methylation microarray data.
    Ren Z; Wang W; Li J
    Int J Oncol; 2016 Feb; 48(2):690-702. PubMed ID: 26647925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A network medicine approach to build a comprehensive atlas for the prognosis of human cancer.
    Zhang F; Ren C; Lau KK; Zheng Z; Lu G; Yi Z; Zhao Y; Su F; Zhang S; Zhang B; Sobie EA; Zhang W; Walsh MJ
    Brief Bioinform; 2016 Nov; 17(6):1044-1059. PubMed ID: 27559151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.