These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 27110318)

  • 1. Quantitative Structure of an Acetate Dye Molecule Analogue at the TiO
    Hussain H; Torrelles X; Cabailh G; Rajput P; Lindsay R; Bikondoa O; Tillotson M; Grau-Crespo R; Zegenhagen J; Thornton G
    J Phys Chem C Nanomater Interfaces; 2016 Apr; 120(14):7586-7590. PubMed ID: 27110318
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Density functional theory study of adsorption geometries and electronic structures of azo-dye-based molecules on anatase TiO
    Prajongtat P; Suramitr S; Nokbin S; Nakajima K; Mitsuke K; Hannongbua S
    J Mol Graph Model; 2017 Sep; 76():551-561. PubMed ID: 28688705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carboxylate Adsorption on Rutile TiO
    Nadeem IM; Hargreaves L; Harrison GT; Idriss H; Shluger AL; Thornton G
    J Phys Chem C Nanomater Interfaces; 2021 Jul; 125(25):13770-13779. PubMed ID: 34239659
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A DFT study of adsorption of perylene on clean and altered anatase (101) TiO2.
    Ikäläinen S; Laasonen K
    Phys Chem Chem Phys; 2013 Jul; 15(28):11673-8. PubMed ID: 23752781
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combined NC-AFM and DFT study of the adsorption geometry of trimesic acid on rutile TiO2(110).
    Greuling A; Rahe P; Kaczmarski M; Kühnle A; Rohlfing M
    J Phys Condens Matter; 2010 Sep; 22(34):345008. PubMed ID: 21403252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical investigation on structural and electronic properties of organic dye C258 on TiO₂(101) surface in dye-sensitized solar cells.
    Sun PP; Li QS; Yang LN; Sun ZZ; Li ZS
    Phys Chem Chem Phys; 2014 Oct; 16(39):21827-37. PubMed ID: 25201320
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A density functional tight binding study of acetic acid adsorption on crystalline and amorphous surfaces of titania.
    Manzhos S; Giorgi G; Yamashita K
    Molecules; 2015 Feb; 20(2):3371-88. PubMed ID: 25690294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anchoring groups for dye-sensitized solar cells.
    Zhang L; Cole JM
    ACS Appl Mater Interfaces; 2015 Feb; 7(6):3427-55. PubMed ID: 25594514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. First-Principle Characterization of the Adsorption Configurations of Cyanoacrylic Dyes on TiO
    Tsai HG; Hu JC; Tan CJ; Sheng YC; Chiu CC
    J Phys Chem A; 2016 Nov; 120(44):8813-8822. PubMed ID: 27762550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variation in optoelectronic properties of azo dye-sensitized TiO2 semiconductor interfaces with different adsorption anchors: carboxylate, sulfonate, hydroxyl and pyridyl groups.
    Zhang L; Cole JM; Dai C
    ACS Appl Mater Interfaces; 2014 May; 6(10):7535-46. PubMed ID: 24786472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorption of organic dyes on TiO2 surfaces in dye-sensitized solar cells: interplay of theory and experiment.
    Anselmi C; Mosconi E; Pastore M; Ronca E; De Angelis F
    Phys Chem Chem Phys; 2012 Dec; 14(46):15963-74. PubMed ID: 23108504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DSSC anchoring groups: a surface dependent decision.
    O'Rourke C; Bowler DR
    J Phys Condens Matter; 2014 May; 26(19):195302. PubMed ID: 24762339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ordered Carboxylates on TiO
    Grinter DC; Woolcot T; Pang CL; Thornton G
    J Phys Chem Lett; 2014 Dec; 5(24):4265-4269. PubMed ID: 25550992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anchoring groups for dyes in p-DSSC application: insights from DFT.
    Wykes M; Odobel F; Adamo C; Ciofini I; Labat F
    J Mol Model; 2016 Dec; 22(12):289. PubMed ID: 27853949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photocurrent-voltage of a dye-sensitized nanocrystalline TiO2 solar cells influenced by N719 dye adsorption properties.
    Lee JW; Hwang KJ; Park DW; Park KH; Shim WG; Kim SC
    J Nanosci Nanotechnol; 2007 Nov; 7(11):3717-21. PubMed ID: 18047044
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Precise identification and manipulation of adsorption geometry of donor-π-acceptor dye on nanocrystalline TiO₂ films for improved photovoltaics.
    Zhang F; Ma W; Jiao Y; Wang J; Shan X; Li H; Lu X; Meng S
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22359-69. PubMed ID: 25418522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adsorption properties of p-methyl red monomeric-to-pentameric dye aggregates on anatase (101) titania surfaces: first-principles calculations of dye/TiO₂ photoanode interfaces for dye-sensitized solar cells.
    Zhang L; Cole JM
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):15760-6. PubMed ID: 25148140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Can nitro groups really anchor onto TiO2? Case study of dye-to-TiO2 adsorption using azo dyes with NO2 substituents.
    Zhang L; Cole JM
    Phys Chem Chem Phys; 2016 Jul; 18(28):19062-9. PubMed ID: 27356762
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Natural dye extract of lawsonia inermis seed as photo sensitizer for titanium dioxide based dye sensitized solar cells.
    Ananth S; Vivek P; Arumanayagam T; Murugakoothan P
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jul; 128():420-6. PubMed ID: 24682058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Re-evaluating the role of phosphinic acid (DINHOP) adsorption at the photoanode surface in the performance of dye-sensitized solar cells.
    Rodríguez-Perez M; Noh-Pat F; Romero-Contreras A; Reyes-Ramírez EJ; Krishnan SK; Ortíz-Quiñonez JL; Alvarado J; Pal U; Olalde-Velasco P; Villanueva-Cab J
    Phys Chem Chem Phys; 2020 Jan; 22(3):1756-1766. PubMed ID: 31898710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.