These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 27110682)
1. Disruption of OsSULTR3;3 reduces phytate and phosphorus concentrations and alters the metabolite profile in rice grains. Zhao H; Frank T; Tan Y; Zhou C; Jabnoune M; Arpat AB; Cui H; Huang J; He Z; Poirier Y; Engel KH; Shu Q New Phytol; 2016 Aug; 211(3):926-39. PubMed ID: 27110682 [TBL] [Abstract][Full Text] [Related]
2. Stability of the Metabolite Signature Resulting from the OsSULTR3;3 Mutation in Low Phytic Acid Rice ( Oryza sativa L.) Seeds upon Cross-breeding. Zhou C; Tan Y; Goßner S; Li Y; Shu Q; Engel KH J Agric Food Chem; 2018 Sep; 66(35):9366-9376. PubMed ID: 30111098 [TBL] [Abstract][Full Text] [Related]
3. Mutations of the multi-drug resistance-associated protein ABC transporter gene 5 result in reduction of phytic acid in rice seeds. Xu XH; Zhao HJ; Liu QL; Frank T; Engel KH; An G; Shu QY Theor Appl Genet; 2009 Jun; 119(1):75-83. PubMed ID: 19370321 [TBL] [Abstract][Full Text] [Related]
4. Isolation and characterization of a low phytic acid rice mutant reveals a mutation in the rice orthologue of maize MIK. Kim SI; Andaya CB; Newman JW; Goyal SS; Tai TH Theor Appl Genet; 2008 Nov; 117(8):1291-301. PubMed ID: 18726583 [TBL] [Abstract][Full Text] [Related]
5. Different Phosphorus Supplies Altered the Accumulations and Quantitative Distributions of Phytic Acid, Zinc, and Iron in Rice (Oryza sativa L.) Grains. Su D; Zhou L; Zhao Q; Pan G; Cheng F J Agric Food Chem; 2018 Feb; 66(7):1601-1611. PubMed ID: 29401375 [TBL] [Abstract][Full Text] [Related]
6. Phytic Acid Contents and Metabolite Profiles of Progenies from Crossing Tan Y; Zhou C; Goßner S; Li Y; Engel KH; Shu Q J Agric Food Chem; 2019 Oct; 67(42):11805-11814. PubMed ID: 31566383 [TBL] [Abstract][Full Text] [Related]
7. Reducing phosphorus accumulation in rice grains with an impaired transporter in the node. Yamaji N; Takemoto Y; Miyaji T; Mitani-Ueno N; Yoshida KT; Ma JF Nature; 2017 Jan; 541(7635):92-95. PubMed ID: 28002408 [TBL] [Abstract][Full Text] [Related]
8. Analysis of Lysophospholipid Content in Low Phytate Rice Mutants. Tong C; Chen Y; Tan Y; Liu L; Waters DLE; Rose TJ; Shu Q; Bao J J Agric Food Chem; 2017 Jul; 65(26):5435-5441. PubMed ID: 28603982 [TBL] [Abstract][Full Text] [Related]
9. A decrease in phytic acid content substantially affects the distribution of mineral elements within rice seeds. Sakai H; Iwai T; Matsubara C; Usui Y; Okamura M; Yatou O; Terada Y; Aoki N; Nishida S; Yoshida KT Plant Sci; 2015 Sep; 238():170-7. PubMed ID: 26259185 [TBL] [Abstract][Full Text] [Related]
10. Impact of Crossing Parent and Environment on the Metabolite Profiles of Progenies Generated from a Low Phytic Acid Rice ( Oryza sativa L.) Mutant. Zhou C; Tan Y; Goßner S; Li Y; Shu Q; Engel KH J Agric Food Chem; 2019 Feb; 67(8):2396-2407. PubMed ID: 30724567 [TBL] [Abstract][Full Text] [Related]
11. Generation and characterization of low phytic acid germplasm in rice (Oryza sativa L.). Liu QL; Xu XH; Ren XL; Fu HW; Wu DX; Shu QY Theor Appl Genet; 2007 Mar; 114(5):803-14. PubMed ID: 17219209 [TBL] [Abstract][Full Text] [Related]
12. Mutational Analysis of Khan MSS; Basnet R; Islam SA; Shu Q J Agric Food Chem; 2019 Oct; 67(41):11436-11443. PubMed ID: 31553599 [TBL] [Abstract][Full Text] [Related]
13. Seed-specific silencing of OsMRP5 reduces seed phytic acid and weight in rice. Li WX; Zhao HJ; Pang WQ; Cui HR; Poirier Y; Shu QY Transgenic Res; 2014 Aug; 23(4):585-99. PubMed ID: 24648215 [TBL] [Abstract][Full Text] [Related]
14. Dynamic changes in the distribution of minerals in relation to phytic acid accumulation during rice seed development. Iwai T; Takahashi M; Oda K; Terada Y; Yoshida KT Plant Physiol; 2012 Dec; 160(4):2007-14. PubMed ID: 23090587 [TBL] [Abstract][Full Text] [Related]
15. Generation of stable 'low phytic acid' transgenic rice through antisense repression of the 1D-myo-inositol 3-phosphate synthase gene (RINO1) using the 18-kDa oleosin promoter. Kuwano M; Mimura T; Takaiwa F; Yoshida KT Plant Biotechnol J; 2009 Jan; 7(1):96-105. PubMed ID: 19021878 [TBL] [Abstract][Full Text] [Related]
16. Expression regulation of myo-inositol 3-phosphate synthase 1 (INO1) in determination of phytic acid accumulation in rice grain. Perera I; Fukushima A; Akabane T; Horiguchi G; Seneweera S; Hirotsu N Sci Rep; 2019 Oct; 9(1):14866. PubMed ID: 31619750 [TBL] [Abstract][Full Text] [Related]
17. OsIPK1 frameshift mutations disturb phosphorus homeostasis and impair starch synthesis during grain filling in rice. Wang L; Cui J; Zhang N; Wang X; Su J; Vallés MP; Wu S; Yao W; Chen X; Chen D Plant Mol Biol; 2024 Aug; 114(5):91. PubMed ID: 39172289 [TBL] [Abstract][Full Text] [Related]
18. A nonsense mutation in a putative sulphate transporter gene results in low phytic acid in barley. Ye H; Zhang XQ; Broughton S; Westcott S; Wu D; Lance R; Li C Funct Integr Genomics; 2011 Mar; 11(1):103-10. PubMed ID: 21243513 [TBL] [Abstract][Full Text] [Related]
19. Development of low phytate rice by RNAi mediated seed-specific silencing of inositol 1,3,4,5,6-pentakisphosphate 2-kinase gene (IPK1). Ali N; Paul S; Gayen D; Sarkar SN; Datta K; Datta SK PLoS One; 2013; 8(7):e68161. PubMed ID: 23844166 [TBL] [Abstract][Full Text] [Related]
20. Novel allelic variant of Lpa1 gene associated with a significant reduction in seed phytic acid content in rice (Oryza sativa L.). Kishor DS; Lee C; Lee D; Venkatesh J; Seo J; Chin JH; Jin Z; Hong SK; Ham JK; Koh HJ PLoS One; 2019; 14(3):e0209636. PubMed ID: 30870429 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]