BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 27110760)

  • 1. Enantioselective Separation of 4,8-DHT and Phytotoxicity of the Enantiomers on Various Plant Species.
    Yang L; Ma XY; Ruan X; Jiang DA; Pan CD; Wang Q
    Molecules; 2016 Apr; 21(4):528. PubMed ID: 27110760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phytotoxicity of 4,8-dihydroxy-1-tetralone isolated from Carya cathayensis Sarg. to various plant species.
    Li XX; Yu MF; Ruan X; Zhang YZ; Wang Q
    Molecules; 2014 Sep; 19(10):15452-67. PubMed ID: 25264832
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phytotoxicity of three plant-based biodiesels, unmodified castor oil, and Diesel fuel to alfalfa (Medicago sativa L.), lettuce (Lactuca sativa L.), radish (Raphanus sativus), and wheatgrass (Triticum aestivum).
    Bamgbose I; Anderson TA
    Ecotoxicol Environ Saf; 2015 Dec; 122():268-74. PubMed ID: 26283287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Seed germination, root elongation, root-tip mitosis, and micronucleus induction of five crop plants exposed to chromium in fluvo-aquic soil.
    Hou J; Liu GN; Xue W; Fu WJ; Liang BC; Liu XH
    Environ Toxicol Chem; 2014 Mar; 33(3):671-6. PubMed ID: 24318542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Autotoxicity and allelopathy of 3,4-dihydroxyacetophenone isolated from Picea schrenkiana needles.
    Ruan X; Li ZH; Wang Q; Pan CD; Jiang DA; Wang GG
    Molecules; 2011 Oct; 16(10):8874-93. PubMed ID: 22024957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phytotoxicity to and uptake of enrofloxacin in crop plants.
    Migliore L; Cozzolino S; Fiori M
    Chemosphere; 2003 Aug; 52(7):1233-44. PubMed ID: 12821004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phytotoxic activities of (2R)-6-hydroxytremetone.
    Romano E; Raschi AB; González AM; Jaime G; Fortuna MA; Hernández LR; Bach H; Benavente AM
    Plant Physiol Biochem; 2011 Jun; 49(6):671-5. PubMed ID: 21398137
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phytotoxicity of nanoparticles: inhibition of seed germination and root growth.
    Lin D; Xing B
    Environ Pollut; 2007 Nov; 150(2):243-50. PubMed ID: 17374428
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoinduced toxicity of fluoranthene on germination and early development of plant seedling.
    Kummerová M; Kmentová E
    Chemosphere; 2004 Jul; 56(4):387-93. PubMed ID: 15184002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ecotoxicological assessment of glyphosate-based herbicides: Effects on different organisms.
    de Brito Rodrigues L; de Oliveira R; Abe FR; Brito LB; Moura DS; Valadares MC; Grisolia CK; de Oliveira DP; de Oliveira GAR
    Environ Toxicol Chem; 2017 Jul; 36(7):1755-1763. PubMed ID: 27517480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of phytotoxicity and ecotoxicity potentials of a cyanobacterial extract containing microcystins under realistic environmental concentrations and in a soil-plant system.
    Corbel S; Mougin C; Martin-Laurent F; Crouzet O; Bru D; Nélieu S; Bouaïcha N
    Chemosphere; 2015 Jun; 128():332-40. PubMed ID: 25754013
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phytotoxicity of veterinary antibiotics to seed germination and root elongation of crops.
    Pan M; Chu LM
    Ecotoxicol Environ Saf; 2016 Apr; 126():228-237. PubMed ID: 26773832
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    Danna C; Cornara L; Smeriglio A; Trombetta D; Amato G; Aicardi P; De Martino L; De Feo V; Caputo L
    Molecules; 2021 Nov; 26(21):. PubMed ID: 34771155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of low-dose, repeated exposure of contaminants of emerging concern on plant development and hormone homeostasis.
    McGinnis M; Sun C; Dudley S; Gan J
    Environ Pollut; 2019 Sep; 252(Pt A):706-714. PubMed ID: 31185360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of walnut husk washing waters and their phenolic constituents on horticultural species.
    Ciniglia C; Sansone C; Panzella L; Napolitano A; d'Ischia M
    Environ Sci Pollut Res Int; 2012 Sep; 19(8):3299-306. PubMed ID: 22411198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plant Growth-Promoting Rhizobacteria Improved Salinity Tolerance of
    Hussein KA; Joo JH
    J Microbiol Biotechnol; 2018 Jun; 28(6):938-945. PubMed ID: 29847869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The impact of seed burial depths and post-emergence herbicides on seedling emergence and biomass production of wild oat (Avena fatua L.): Implications for management.
    Maqbool MM; Naz S; Ahmad T; Nisar MS; Mehmood H; Alwahibi MS; Alkahtani J
    PLoS One; 2020; 15(10):e0240944. PubMed ID: 33112902
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Composting of waste paint sludge containing melamine resin and the compost's effect on vegetable growth and soil water quality.
    Tian Y; Chen L; Gao L; Michel FC; Keener HM; Klingman M; Dick WA
    J Hazard Mater; 2012 Dec; 243():28-36. PubMed ID: 23127275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phytotoxicity of effluents from swine slaughterhouses using lettuce and cucumber seeds as bioindicators.
    Gerber MD; Lucia T; Correa L; Neto JEP; Correa ÉK
    Sci Total Environ; 2017 Aug; 592():86-90. PubMed ID: 28314134
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of phytotoxicity effect on selected crops using treated and untreated wastewater from different configurative domestic wastewater plants.
    Ravindran B; Kumari SK; Stenstrom TA; Bux F
    Environ Technol; 2016; 37(14):1782-9. PubMed ID: 26806819
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.