These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 27110835)

  • 1. Entrainment and Control of Bacterial Populations: An in Silico Study over a Spatially Extended Agent Based Model.
    Mina P; Tsaneva-Atanasova K; Bernardo Md
    ACS Synth Biol; 2016 Jul; 5(7):639-53. PubMed ID: 27110835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Traveling waves in response to a diffusing quorum sensing signal in spatially-extended bacterial colonies.
    Langebrake JB; Dilanji GE; Hagen SJ; De Leenheer P
    J Theor Biol; 2014 Dec; 363():53-61. PubMed ID: 25109591
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Shannon B; Zamora-Chimal CG; Postiglione L; Salzano D; Grierson CS; Marucci L; Savery NJ; di Bernardo M
    ACS Synth Biol; 2020 Oct; 9(10):2617-2624. PubMed ID: 32966743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transition to quorum sensing in an Agrobacterium population: A stochastic model.
    Goryachev AB; Toh DJ; Wee KB; Lee T; Zhang HB; Zhang LH
    PLoS Comput Biol; 2005 Sep; 1(4):e37. PubMed ID: 16170413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. BSim 2.0: An Advanced Agent-Based Cell Simulator.
    Matyjaszkiewicz A; Fiore G; Annunziata F; Grierson CS; Savery NJ; Marucci L; di Bernardo M
    ACS Synth Biol; 2017 Oct; 6(10):1969-1972. PubMed ID: 28585809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling of cell-to-cell communication processes with Petri nets using the example of quorum sensing.
    Janowski S; Kormeier B; Töpel T; Hippe K; Hofestädt R; Willassen N; Friesen R; Rubert S; Borck D; Haugen P; Chen M
    In Silico Biol; 2010; 10(1):27-48. PubMed ID: 22430220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of the hydrodynamic environment on quorum sensing in Pseudomonas aeruginosa biofilms.
    Kirisits MJ; Margolis JJ; Purevdorj-Gage BL; Vaughan B; Chopp DL; Stoodley P; Parsek MR
    J Bacteriol; 2007 Nov; 189(22):8357-60. PubMed ID: 17704224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systems analysis of a quorum sensing network: design constraints imposed by the functional requirements, network topology and kinetic constants.
    Goryachev AB; Toh DJ; Lee T
    Biosystems; 2006; 83(2-3):178-87. PubMed ID: 16174549
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A semi-quantitative model of Quorum-Sensing in Staphylococcus aureus, approved by microarray meta-analyses and tested by mutation studies.
    Audretsch C; Lopez D; Srivastava M; Wolz C; Dandekar T
    Mol Biosyst; 2013 Nov; 9(11):2665-80. PubMed ID: 23959234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Balancing a genetic toggle switch by real-time feedback control and periodic forcing.
    Lugagne JB; Sosa Carrillo S; Kirch M; Köhler A; Batt G; Hersen P
    Nat Commun; 2017 Nov; 8(1):1671. PubMed ID: 29150615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simple models for quorum sensing: nonlinear dynamical analysis.
    Chiang WY; Li YX; Lai PY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 1):041921. PubMed ID: 22181189
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A model of the quorum sensing system in Vibrio fischeri using P systems.
    Romero-Campero FJ; Pérez-Jiménez MJ
    Artif Life; 2008; 14(1):95-109. PubMed ID: 18171133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthetic tetracycline-inducible regulatory networks: computer-aided design of dynamic phenotypes.
    Sotiropoulos V; Kaznessis YN
    BMC Syst Biol; 2007 Jan; 1():7. PubMed ID: 17408514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SYNTHETIC BIOLOGY. Emergent genetic oscillations in a synthetic microbial consortium.
    Chen Y; Kim JK; Hirning AJ; Josić K; Bennett MR
    Science; 2015 Aug; 349(6251):986-9. PubMed ID: 26315440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling growth and quorum sensing in biofilms grown in microfluidic chambers.
    Janakiraman V; Englert D; Jayaraman A; Baskaran H
    Ann Biomed Eng; 2009 Jun; 37(6):1206-16. PubMed ID: 19291402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A mathematical model of the Gac/Rsm quorum sensing network in Pseudomonas fluorescens.
    Brown D
    Biosystems; 2010 Sep; 101(3):200-12. PubMed ID: 20643183
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel insights into Haemagglutinin Protease (HAP) gene regulation in Vibrio cholerae.
    Halpern M
    Mol Ecol; 2010 Oct; 19(19):4108-12. PubMed ID: 20819164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Construct a molecular switch based on bacterial quorum sensing].
    Zhang Z; Wu S
    Sheng Wu Gong Cheng Xue Bao; 2013 Sep; 29(9):1301-12. PubMed ID: 24409693
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Classification of phenotypic subpopulations in isogenic bacterial cultures by triple promoter probing at single cell level.
    Schlüter JP; Czuppon P; Schauer O; Pfaffelhuber P; McIntosh M; Becker A
    J Biotechnol; 2015 Mar; 198():3-14. PubMed ID: 25661839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A model of TLR4 signaling and tolerance using a qualitative, particle-event-based method: introduction of spatially configured stochastic reaction chambers (SCSRC).
    An G
    Math Biosci; 2009 Jan; 217(1):43-52. PubMed ID: 18950646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.