These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 27110836)

  • 1. Load-Dependent Friction Hysteresis on Graphene.
    Ye Z; Egberts P; Han GH; Johnson AT; Carpick RW; Martini A
    ACS Nano; 2016 May; 10(5):5161-8. PubMed ID: 27110836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Frictional behavior of atomically thin sheets: hexagonal-shaped graphene islands grown on copper by chemical vapor deposition.
    Egberts P; Han GH; Liu XZ; Johnson AT; Carpick RW
    ACS Nano; 2014 May; 8(5):5010-21. PubMed ID: 24862034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoscale frictional behavior of graphene on SiO₂ and Ni(111) substrates.
    Paolicelli G; Tripathi M; Corradini V; Candini A; Valeri S
    Nanotechnology; 2015 Feb; 26(5):055703. PubMed ID: 25581391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomistic simulation of the load dependence of nanoscale friction on suspended and supported graphene.
    Ye Z; Martini A
    Langmuir; 2014 Dec; 30(49):14707-11. PubMed ID: 25419859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomic-Scale Sliding Friction on Graphene in Water.
    Vilhena JG; Pimentel C; Pedraz P; Luo F; Serena PA; Pina CM; Gnecco E; Pérez R
    ACS Nano; 2016 Apr; 10(4):4288-93. PubMed ID: 26982997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic Sliding Enhancement on the Friction and Adhesion of Graphene, Graphene Oxide, and Fluorinated Graphene.
    Zeng X; Peng Y; Yu M; Lang H; Cao X; Zou K
    ACS Appl Mater Interfaces; 2018 Mar; 10(9):8214-8224. PubMed ID: 29443495
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Suppressing Nanoscale Wear by Graphene/Graphene Interfacial Contact Architecture: A Molecular Dynamics Study.
    Xu Q; Li X; Zhang J; Hu Y; Wang H; Ma T
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40959-40968. PubMed ID: 29083163
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Double-Vacancy Controlled Friction on Graphene: The Enhancement of Atomic Pinning.
    Shen B; Lin Q; Chen S; Huang Z; Ji Z; Cao A; Zhang Z
    Langmuir; 2019 Oct; 35(40):12898-12907. PubMed ID: 31513424
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Origin of Nanoscale Friction Contrast between Supported Graphene, MoS
    Vazirisereshk MR; Ye H; Ye Z; Otero-de-la-Roza A; Zhao MQ; Gao Z; Johnson ATC; Johnson ER; Carpick RW; Martini A
    Nano Lett; 2019 Aug; 19(8):5496-5505. PubMed ID: 31267757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Origin of High Friction at Graphene Step Edges on Graphite.
    Chen Z; Khajeh A; Martini A; Kim SH
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):1895-1902. PubMed ID: 33347272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoscale interfacial friction and adhesion on supported versus suspended monolayer and multilayer graphene.
    Deng Z; Klimov NN; Solares SD; Li T; Xu H; Cannara RJ
    Langmuir; 2013 Jan; 29(1):235-43. PubMed ID: 23215163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Ambient Chemistry on Friction at the Basal Plane of Graphite.
    Khajeh A; Chen Z; Kim SH; Martini A
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):40800-40807. PubMed ID: 31578847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identifying Physical and Chemical Contributions to Friction: A Comparative Study of Chemically Inert and Active Graphene Step Edges.
    Chen Z; Khajeh A; Martini A; Kim SH
    ACS Appl Mater Interfaces; 2020 Jul; 12(26):30007-30015. PubMed ID: 32496047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Velocity dependent friction laws in contact mode atomic force microscopy.
    Stark RW; Schitter G; Stemmer A
    Ultramicroscopy; 2004 Aug; 100(3-4):309-17. PubMed ID: 15231324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Atomic Corrugation on Adhesion and Friction: A Model Study with Graphene Step Edges.
    Chen Z; Vazirisereshk MR; Khajeh A; Martini A; Kim SH
    J Phys Chem Lett; 2019 Nov; 10(21):6455-6461. PubMed ID: 31584830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atomic-Scale Friction Characteristics of Graphene under Conductive AFM with Applied Voltages.
    Lang H; Peng Y; Cao X; Zou K
    ACS Appl Mater Interfaces; 2020 Jun; 12(22):25503-25511. PubMed ID: 32394710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The evolving quality of frictional contact with graphene.
    Li S; Li Q; Carpick RW; Gumbsch P; Liu XZ; Ding X; Sun J; Li J
    Nature; 2016 Nov; 539(7630):541-545. PubMed ID: 27882973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomic-scale friction on diamond: a comparison of different sliding directions on (001) and (111) surfaces using MD and AFM.
    Gao G; Cannara RJ; Carpick RW; Harrison JA
    Langmuir; 2007 May; 23(10):5394-405. PubMed ID: 17407330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular dynamics simulations of nanoscale and sub-nanoscale friction behavior between graphene and a silicon tip: analysis of tip apex motion.
    Yoon HM; Jung Y; Jun SC; Kondaraju S; Lee JS
    Nanoscale; 2015 Apr; 7(14):6295-303. PubMed ID: 25782533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of Humidity and Water Intercalation on the Tribological Behavior of Graphene and Graphene Oxide.
    Arif T; Colas G; Filleter T
    ACS Appl Mater Interfaces; 2018 Jul; 10(26):22537-22544. PubMed ID: 29894628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.