BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 27110926)

  • 21. Development of a dual phantom technique for measuring the fast neutron component of dose in boron neutron capture therapy.
    Sakurai Y; Tanaka H; Kondo N; Kinashi Y; Suzuki M; Masunaga S; Ono K; Maruhashi A
    Med Phys; 2015 Nov; 42(11):6651-7. PubMed ID: 26520755
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Feasibility study on epithermal neutron field for cyclotron-based boron neutron capture therapy.
    Yonai S; Aoki T; Nakamura T; Yashima H; Baba M; Yokobori H; Tahara Y
    Med Phys; 2003 Aug; 30(8):2021-30. PubMed ID: 12945968
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analysis on the emission and potential application of Cherenkov radiation in boron neutron capture therapy: A Monte Carlo simulation study.
    Shu DY; Geng CR; Tang XB; Gong CH; Shao WC; Ai Y
    Appl Radiat Isot; 2018 Jul; 137():219-224. PubMed ID: 29655128
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Performance characteristics of the MIT fission converter based epithermal neutron beam.
    Riley KJ; Binns PJ; Harling OK
    Phys Med Biol; 2003 Apr; 48(7):943-58. PubMed ID: 12701897
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Exploration of Adiabatic Resonance Crossing Through Neutron Activator Design for Thermal and Epithermal Neutron Formation in (99)Mo Production and BNCT Applications.
    Khorshidi A
    Cancer Biother Radiopharm; 2015 Oct; 30(8):317-29. PubMed ID: 26397967
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of an irradiation method for superficial tumours using a hydrogel bolus in an accelerator-based BNCT.
    Sasaki A; Tanaka H; Takata T; Tamari Y; Watanabe T; Hu N; Kawabata S; Kudo Y; Mitsumoto T; Sakurai Y; Suzuki M
    Biomed Phys Eng Express; 2021 Dec; 8(1):. PubMed ID: 34823226
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optimization of the epithermal neutron beam for Boron Neutron Capture Therapy at the Brookhaven Medical Research Reactor.
    Hu JP; Reciniello RN; Holden NE
    Health Phys; 2004 May; 86(5 Suppl):S103-9. PubMed ID: 15069299
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A feasibility study of the Tehran research reactor as a neutron source for BNCT.
    Kasesaz Y; Khalafi H; Rahmani F; Ezati A; Keyvani M; Hossnirokh A; Shamami MA; Monshizadeh M
    Appl Radiat Isot; 2014 Aug; 90():132-7. PubMed ID: 24742535
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Preliminary evaluations of the undesirable patient dose from a BNCT treatment at the ENEA-TAPIRO reactor.
    Ferrari P; Gualdrini G; Nava E; Burn KW
    Radiat Prot Dosimetry; 2007; 126(1-4):636-9. PubMed ID: 17704505
    [TBL] [Abstract][Full Text] [Related]  

  • 30. MCNP study for epithermal neutron irradiation of an isolated liver at the Finnish BNCT facility.
    Kotiluoto P; Auterinen I
    Appl Radiat Isot; 2004 Nov; 61(5):781-5. PubMed ID: 15308144
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Monte Carlo simulation-based design for an electron-linear-accelerator-driven subcritical neutron multiplier for boron neutron capture therapy.
    Hiraga F
    Appl Radiat Isot; 2018 Oct; 140():121-125. PubMed ID: 30015040
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Boron neutron capture therapy (BNCT): implications of neutron beam and boron compound characteristics.
    Wheeler FJ; Nigg DW; Capala J; Watkins PR; Vroegindeweij C; Auterinen I; Seppälä T; Bleuel D
    Med Phys; 1999 Jul; 26(7):1237-44. PubMed ID: 10435523
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gamma dose measurement in a water phantom irradiated with the BNCT facility at THOR.
    Liu HM; Hsu PC; Liaw TF
    Radiat Prot Dosimetry; 2001; 95(4):353-8. PubMed ID: 11707034
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Measurements of gamma dose and thermal neutron fluence in phantoms exposed to a BNCT epithermal beam with TLD-700.
    Gambarini G; Magni D; Regazzoni V; Borroni M; Carrara M; Pignoli E; Burian J; Marek M; Klupak V; Viererbl L
    Radiat Prot Dosimetry; 2014 Oct; 161(1-4):422-7. PubMed ID: 24435913
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Feasibility study of optical imaging of the boron-dose distribution by a liquid scintillator in a clinical boron neutron capture therapy field.
    Maeda H; Nohtomi A; Hu N; Kakino R; Akita K; Ono K
    Med Phys; 2024 Jan; 51(1):509-521. PubMed ID: 37672219
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An accelerator-based epithermal neutron beam design for BNCT and dosimetric evaluation using a voxel head phantom.
    Lee DJ; Han CY; Park SH; Kim JK
    Radiat Prot Dosimetry; 2004; 110(1-4):655-60. PubMed ID: 15353726
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A simulation study on beam property of
    Tanaka K; Kajimoto T; Sakurai Y; Bengua G; Endo S
    Appl Radiat Isot; 2020 Oct; 164():109227. PubMed ID: 32819498
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Monte Carlo calculations of lung dose in ORNL phantom for boron neutron capture therapy.
    Krstic D; Markovic VM; Jovanovic Z; Milenkovic B; Nikezic D; Atanackovic J
    Radiat Prot Dosimetry; 2014 Oct; 161(1-4):269-73. PubMed ID: 24435912
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The neutron sensitivity of dosimeters applied to boron neutron capture therapy.
    Raaijmakers CP; Watkins PR; Nottelman EL; Verhagen HW; Jansen JT; Zoetelief J; Mijnheer BJ
    Med Phys; 1996 Sep; 23(9):1581-9. PubMed ID: 8892256
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Monte Carlo simulation-based design of an electron-linear accelerator-based neutron source for boron neutron capture therapy.
    Hiraga F
    Appl Radiat Isot; 2020 Aug; 162():109203. PubMed ID: 32501225
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.