These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 27110926)

  • 41. Monte Carlo calculation for the development of a BNCT neutron source (1eV-10KeV) using MCNP code.
    El Moussaoui F; El Bardouni T; Azahra M; Kamili A; Boukhal H
    Cancer Radiother; 2008 Sep; 12(5):360-4. PubMed ID: 18501657
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Monte-Carlo calculations for the development of a BNCT neutron source at the Kyiv Research Reactor.
    Gritzay OO; Kalchenko OI; Klimova NA; Razbudey VF; Sanzhur AI; Binney SE
    Appl Radiat Isot; 2004 Nov; 61(5):869-73. PubMed ID: 15308160
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Design of a high-flux epithermal neutron beam using 235U fission plates at the Brookhaven Medical Research Reactor.
    Liu HB; Brugger RM; Rorer DC; Tichler PR; Hu JP
    Med Phys; 1994 Oct; 21(10):1627-31. PubMed ID: 7869995
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Feasibility of sealed D-T neutron generator as neutron source for liver BNCT and its beam shaping assembly.
    Liu Z; Li G; Liu L
    Appl Radiat Isot; 2014 Apr; 86():1-6. PubMed ID: 24448270
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Development and characteristics of the HANARO neutron irradiation facility for applications in the boron neutron capture therapy field.
    Kim MS; Lee BC; Hwang SY; Kim H; Jun BJ
    Phys Med Biol; 2007 May; 52(9):2553-66. PubMed ID: 17440252
    [TBL] [Abstract][Full Text] [Related]  

  • 46. On the eptihermal neutron energy limit for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT): Study and impact of new energy limits.
    Hervé M; Sauzet N; Santos D
    Phys Med; 2021 Aug; 88():148-157. PubMed ID: 34265549
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A conceptual design of a beam-shaping assembly for boron neutron capture therapy based on deuterium-tritium neutron generators.
    Martín G; Abrahantes A
    Med Phys; 2004 May; 31(5):1116-22. PubMed ID: 15191299
    [TBL] [Abstract][Full Text] [Related]  

  • 48. MAGIC polymer gel for dosimetric verification in boron neutron capture therapy.
    Uusi-Simola J; Heikkinen S; Kotiluoto P; Serén T; Seppälä T; Auterinen I; Savolainen S
    J Appl Clin Med Phys; 2007 Apr; 8(2):114-23. PubMed ID: 17592463
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Gel dosimetry in the BNCT facility for extra-corporeal treatment of liver cancer at the HFR Petten.
    Gambarini G; Daquino GG; Moss RL; Carrara M; Nievaart VA; Vanossi E
    Radiat Prot Dosimetry; 2007; 126(1-4):604-9. PubMed ID: 17496302
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Spatial and spectral characteristics of a compact system neutron beam designed for BNCT facility.
    Ghassoun J; Chkillou B; Jehouani A
    Appl Radiat Isot; 2009 Apr; 67(4):560-4. PubMed ID: 19168369
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Development of a dose distribution shifter to fit inside the collimator of a Boron Neutron Capture Therapy irradiation system to treat superficial tumours.
    Hu N; Tanaka H; Yoshikawa S; Miyao M; Akita K; Aihara T; Ono K
    Phys Med; 2021 Feb; 82():17-24. PubMed ID: 33548793
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Design and simulation of an optimized e-linac based neutron source for BNCT research.
    Durisi E; Alikaniotis K; Borla O; Bragato F; Costa M; Giannini G; Monti V; Visca L; Vivaldo G; Zanini A
    Appl Radiat Isot; 2015 Dec; 106():63-7. PubMed ID: 26315098
    [TBL] [Abstract][Full Text] [Related]  

  • 53. DEVELOPMENT OF A MULTIMODAL MONTE CARLO BASED TREATMENT PLANNING SYSTEM.
    Kumada H; Takada K; Sakurai Y; Suzuki M; Takata T; Sakurai H; Matsumura A; Sakae T
    Radiat Prot Dosimetry; 2018 Aug; 180(1-4):286-290. PubMed ID: 29087501
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Monte Carlo calculations of epithermal boron neutron capture therapy with heavy water.
    Wallace SA; Allen BJ; Mathur JN
    Phys Med Biol; 1995 Oct; 40(10):1599-608. PubMed ID: 8532742
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Development of Monte Carlo based real-time treatment planning system with fast calculation algorithm for boron neutron capture therapy.
    Takada K; Kumada H; Liem PH; Sakurai H; Sakae T
    Phys Med; 2016 Dec; 32(12):1846-1851. PubMed ID: 27889131
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Dosimetric effects of beam size and collimation of epithermal neutrons for boron neutron capture therapy.
    Yanch JC; Harling OK
    Radiat Res; 1993 Aug; 135(2):131-45. PubMed ID: 8367586
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Feasibility study on the use of 3D silicon microdosimeter detectors for microdosimetric analysis in boron neutron capture therapy.
    Hu N; Uchida R; Tran LT; Rosenfeld A; Sakurai Y
    Appl Radiat Isot; 2018 Oct; 140():109-114. PubMed ID: 30015038
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Modification of the radial beam port of ITU TRIGA Mark II research reactor for BNCT applications.
    Akan Z; Türkmen M; Çakir T; Reyhancan İA; Çolak Ü; Okka M; Kiziltaş S
    Appl Radiat Isot; 2015 May; 99():110-6. PubMed ID: 25746919
    [TBL] [Abstract][Full Text] [Related]  

  • 59. On the optimal energy of epithermal neutron beams for BNCT.
    Biscegliet E; Colangelo P; Colonna N; Santorelli P; Variale V
    Phys Med Biol; 2000 Jan; 45(1):49-58. PubMed ID: 10661582
    [TBL] [Abstract][Full Text] [Related]  

  • 60. High-power electron beam tests of a liquid-lithium target and characterization study of (7)Li(p,n) near-threshold neutrons for accelerator-based boron neutron capture therapy.
    Halfon S; Paul M; Arenshtam A; Berkovits D; Cohen D; Eliyahu I; Kijel D; Mardor I; Silverman I
    Appl Radiat Isot; 2014 Jun; 88():238-42. PubMed ID: 24387907
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.