These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 27110926)

  • 61. Improvement of dose distribution by central beam shielding in boron neutron capture therapy.
    Sakurai Y; Ono K
    Phys Med Biol; 2007 Dec; 52(24):7409-22. PubMed ID: 18065847
    [TBL] [Abstract][Full Text] [Related]  

  • 62. An iterative prediction method for designing the moderator used for the boron neutron capture therapy.
    Zhang R; Yu Y; Zhang Z; Yang Y
    Med Phys; 2022 Jan; 49(1):598-610. PubMed ID: 34762299
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Dosimetric performance evaluation regarding proton beam incident angles of a lithium-based AB-BNCT design.
    Lee PY; Liu YH; Jiang SH
    Radiat Prot Dosimetry; 2014 Oct; 161(1-4):403-9. PubMed ID: 24493784
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Preliminary treatment planning and dosimetry for a clinical trial of neutron capture therapy using a fission converter epithermal neutron beam.
    Kiger WS; Lu XQ; Harling OK; Riley KJ; Binns PJ; Kaplan J; Patel H; Zamenhof RG; Shibata Y; Kaplan ID; Busse PM; Palmer MR
    Appl Radiat Isot; 2004 Nov; 61(5):1075-81. PubMed ID: 15308195
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Synergistic effects of fast-neutron dose per epithermal neutron and
    Hiraga F; Ooie T
    Appl Radiat Isot; 2019 Feb; 144():1-4. PubMed ID: 30465991
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Optimized therapeutic neutron beam for accelerator-based BNCT by analyzing the neutron angular distribution from (7)Li(p,n)(7)Be reaction.
    Kim KO; Kim JK; Kim SY
    Appl Radiat Isot; 2009; 67(7-8):1173-9. PubMed ID: 19303311
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Comparison of different MC techniques to evaluate BNCT dose profiles in phantom exposed tovarious neutron fields.
    Durisi E; Koivunoro H; Visca L; Borla O; Zanini A
    Radiat Prot Dosimetry; 2010 Mar; 138(3):213-22. PubMed ID: 19939825
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Optimum design of a moderator system based on dose calculation for an accelerator driven Boron Neutron Capture Therapy.
    Inoue R; Hiraga F; Kiyanagi Y
    Appl Radiat Isot; 2014 Jun; 88():225-8. PubMed ID: 24440538
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Increase of the beam intensity for BNCT by changing the core configuration at THOR.
    Liu HM; Peir JJ; Liu YH; Tsai PE; Jiang SH
    Appl Radiat Isot; 2009 Jul; 67(7-8 Suppl):S247-50. PubMed ID: 19394237
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Monte Carlo model of the Studsvik BNCT clinical beam: description and validation.
    Giusti V; Munck af Rosenschöld PM; Sköld K; Montagnini B; Capala J
    Med Phys; 2003 Dec; 30(12):3107-17. PubMed ID: 14713077
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Demonstration of the importance of a dedicated neutron beam monitoring system for BNCT facility.
    Chao DS; Liu YH; Jiang SH
    Appl Radiat Isot; 2016 Jan; 107():312-316. PubMed ID: 26595774
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Dose monitoring for boron neutron capture therapy using a reactor-based epithermal neutron beam.
    Raaijmakers CP; Nottelman EL; Konijnenberg MW; Mijnheer BJ
    Phys Med Biol; 1996 Dec; 41(12):2789-97. PubMed ID: 8971969
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Measurements of the thermal neutron flux for an accelerator-based photoneutron source.
    Taheri A; Pazirandeh A
    Australas Phys Eng Sci Med; 2016 Dec; 39(4):857-862. PubMed ID: 27573907
    [TBL] [Abstract][Full Text] [Related]  

  • 74. (33)S as a cooperative capturer for BNCT.
    Praena J; Sabaté-Gilarte M; Porras I; Esquinas PL; Quesada JM; Mastinu P
    Appl Radiat Isot; 2014 Jun; 88():203-5. PubMed ID: 24491680
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Enhancement of the epithermal neutron beam used for boron neutron capture therapy.
    Liu HB; Brugger RM; Greenberg DD; Rorer DC; Hu JP; Hauptman HM
    Int J Radiat Oncol Biol Phys; 1994 Mar; 28(5):1149-56. PubMed ID: 8175400
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A preliminary inter-centre comparison study for photon, thermal neutron and epithermal neutron responses of two pairs of ionisation chambers used for BNCT.
    Roca A; Liu YH; Wojnecki C; Green S; Nievaart S; Ghani Z; Moss R
    Appl Radiat Isot; 2009 Jul; 67(7-8 Suppl):S134-6. PubMed ID: 19376717
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A state-of-the-art epithermal neutron irradiation facility for neutron capture therapy.
    Riley KJ; Binns PJ; Harling OK
    Phys Med Biol; 2004 Aug; 49(16):3725-35. PubMed ID: 15446801
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Characteristics of the new THOR epithermal neutron beam for BNCT.
    Tung CJ; Wang YL; Hsu FY; Chang SL; Liu YW
    Appl Radiat Isot; 2004 Nov; 61(5):861-4. PubMed ID: 15308158
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Use of low-pressure tissue equivalent proportional counters for the dosimetry of neutron beams used in BNCT and BNCEFNT.
    Kota C; Maughan RL; Tattam D; Beynon TD
    Med Phys; 2000 Mar; 27(3):535-48. PubMed ID: 10757605
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Investigation on the reflector/moderator geometry and its effect on the neutron beam design in BNCT.
    Kasesaz Y; Rahmani F; Khalafi H
    Appl Radiat Isot; 2015 Dec; 106():34-7. PubMed ID: 26298435
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.