These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 27110964)

  • 1. Multi-modal demands of a smartphone used to place calls and enter addresses during highway driving relative to two embedded systems.
    Reimer B; Mehler B; Reagan I; Kidd D; Dobres J
    Ergonomics; 2016 Dec; 59(12):1565-1585. PubMed ID: 27110964
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-modal assessment of on-road demand of voice and manual phone calling and voice navigation entry across two embedded vehicle systems.
    Mehler B; Kidd D; Reimer B; Reagan I; Dobres J; McCartt A
    Ergonomics; 2016 Mar; 59(3):344-67. PubMed ID: 26269281
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Patterns in transitions of visual attention during baseline driving and during interaction with visual-manual and voice-based interfaces.
    Reimer B; Mehler B; Muñoz M; Dobres J; Kidd D; Reagan IJ
    Ergonomics; 2021 Nov; 64(11):1429-1451. PubMed ID: 34018916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparing the demands of destination entry using Google Glass and the Samsung Galaxy S4 during simulated driving.
    Beckers N; Schreiner S; Bertrand P; Mehler B; Reimer B
    Appl Ergon; 2017 Jan; 58():25-34. PubMed ID: 27633195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The relative impact of smartwatch and smartphone use while driving on workload, attention, and driving performance.
    Perlman D; Samost A; Domel AG; Mehler B; Dobres J; Reimer B
    Appl Ergon; 2019 Feb; 75():8-16. PubMed ID: 30509540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Factors affecting drivers' off-road glance behavior while interacting with in-vehicle voice interfaces.
    Zhang F; Roberts SC
    Accid Anal Prev; 2023 Jan; 179():106883. PubMed ID: 36356510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visual and cognitive demands of manual and voice-based driving mode implementations on smartphones.
    Monk C; Sall R; Lester BD; Stephen Higgins J
    Accid Anal Prev; 2023 Jul; 187():107033. PubMed ID: 37099998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of voice technology on test track driving performance: implications for driver distraction.
    Ranney TA; Harbluk JL; Noy YI
    Hum Factors; 2005; 47(2):439-54. PubMed ID: 16170949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Driving while using a smartphone-based mobility application: Evaluating the impact of three multi-choice user interfaces on visual-manual distraction.
    Louveton N; McCall R; Koenig V; Avanesov T; Engel T
    Appl Ergon; 2016 May; 54():196-204. PubMed ID: 26851479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Driving While Interacting With Google Glass: Investigating the Combined Effect of Head-Up Display and Hands-Free Input on Driving Safety and Multitask Performance.
    Tippey KG; Sivaraj E; Ferris TK
    Hum Factors; 2017 Jun; 59(4):671-688. PubMed ID: 28186420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Task-Relevant Smartphone Messages Within Work Zones: A Driving Simulation Study.
    Craig CM; Tian D; Morris NL
    Hum Factors; 2024 Jun; 66(6):1786-1797. PubMed ID: 37127401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The smartphone and the driver's cognitive workload: A comparison of Apple, Google, and Microsoft's intelligent personal assistants.
    Strayer DL; Cooper JM; Turrill J; Coleman JR; Hopman RJ
    Can J Exp Psychol; 2017 Jun; 71(2):93-110. PubMed ID: 28604047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluating secondary input devices to support an automotive touchscreen HMI: A cross-cultural simulator study conducted in the UK and China.
    Large DR; Burnett G; Crundall E; Lawson G; Skrypchuk L; Mouzakitis A
    Appl Ergon; 2019 Jul; 78():184-196. PubMed ID: 31046950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using Sound to Reduce Visual Distraction from In-vehicle Human-Machine Interfaces.
    Larsson P; Niemand M
    Traffic Inj Prev; 2015; 16 Suppl 1():S25-30. PubMed ID: 26027972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Texting while driving using Google Glass™: Promising but not distraction-free.
    He J; Choi W; McCarley JS; Chaparro BS; Wang C
    Accid Anal Prev; 2015 Aug; 81():218-29. PubMed ID: 26024837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of different speech and touch interfaces to in-vehicle music retrieval systems.
    Garay-Vega L; Pradhan AK; Weinberg G; Schmidt-Nielsen B; Harsham B; Shen Y; Divekar G; Romoser M; Knodler M; Fisher DL
    Accid Anal Prev; 2010 May; 42(3):913-20. PubMed ID: 20380920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On-Road Evaluation of In-vehicle Interface Characteristics and Their Effects on Performance of Visual Detection on the Road and Manual Entry.
    Suh Y; Ferris TK
    Hum Factors; 2019 Feb; 61(1):105-118. PubMed ID: 30059239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Naturalistic study on the usage of smartphone applications among Finnish drivers.
    Kujala T; Mäkelä J
    Accid Anal Prev; 2018 Jun; 115():53-61. PubMed ID: 29549771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance of an Additional Task During Level 2 Automated Driving: An On-Road Study Comparing Drivers With and Without Experience With Partial Automation.
    Solís-Marcos I; Ahlström C; Kircher K
    Hum Factors; 2018 Sep; 60(6):778-792. PubMed ID: 29791201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Driving behaviour while self-regulating mobile phone interactions: A human-machine system approach.
    Oviedo-Trespalacios O; Haque MM; King M; Demmel S
    Accid Anal Prev; 2018 Sep; 118():253-262. PubMed ID: 29653674
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.