These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 27111082)

  • 1. The Effect of Mechanical Varus on Anterior Cruciate Ligament and Lateral Collateral Ligament Stress: Finite Element Analyses.
    Hinckel BB; Demange MK; Gobbi RG; Pécora JR; Camanho GL
    Orthopedics; 2016 Jul; 39(4):e729-36. PubMed ID: 27111082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A musculoskeletal model of the knee for evaluating ligament forces during isometric contractions.
    Shelburne KB; Pandy MG
    J Biomech; 1997 Feb; 30(2):163-76. PubMed ID: 9001937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stress changes of lateral collateral ligament at different knee flexion with or without displaced movements: a 3-dimensional finite element analysis.
    Zhong YL; Wang Y; Wang HP; Rong K; Xie L
    Chin J Traumatol; 2011 Apr; 14(2):79-83. PubMed ID: 21453572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of section of the medial collateral ligament on force generated in the anterior cruciate ligament.
    Shapiro MS; Markolf KL; Finerman GA; Mitchell PW
    J Bone Joint Surg Am; 1991 Feb; 73(2):248-56. PubMed ID: 1993720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of the posterolateral and cruciate ligaments in the stability of the human knee. A biomechanical study.
    Gollehon DL; Torzilli PA; Warren RF
    J Bone Joint Surg Am; 1987 Feb; 69(2):233-42. PubMed ID: 3805084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tension changes within the bundles of anatomic double-bundle anterior cruciate ligament reconstruction at different knee flexion angles: a study using a 3-dimensional finite element model.
    Kim HY; Seo YJ; Kim HJ; Nguyenn T; Shetty NS; Yoo YS
    Arthroscopy; 2011 Oct; 27(10):1400-8. PubMed ID: 21831570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ force in the anterior cruciate ligament, the lateral collateral ligament, and the anterolateral capsule complex during a simulated pivot shift test.
    Bell KM; Rahnemai-Azar AA; Irarrazaval S; Guenther D; Fu FH; Musahl V; Debski RE
    J Orthop Res; 2018 Mar; 36(3):847-853. PubMed ID: 28782837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A patient-specific finite element analysis of the anterior cruciate ligament under different flexion angles.
    Safari M; Shojaei S; Tehrani P; Karimi A
    J Back Musculoskelet Rehabil; 2020; 33(5):811-815. PubMed ID: 31815688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Steeper posterior tibial slope markedly increases ACL force in both active gait and passive knee joint under compression.
    Marouane H; Shirazi-Adl A; Adouni M; Hashemi J
    J Biomech; 2014 Apr; 47(6):1353-9. PubMed ID: 24576586
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of reaction forces on the anterior cruciate and anterolateral ligaments during internal rotation and anterior drawer forces at different flexion angles of the knee joint.
    Uğur L
    Int J Med Robot; 2017 Dec; 13(4):. PubMed ID: 28251769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ forces in the anterior cruciate ligament and its bundles in response to anterior tibial loads.
    Sakane M; Fox RJ; Woo SL; Livesay GA; Li G; Fu FH
    J Orthop Res; 1997 Mar; 15(2):285-93. PubMed ID: 9167633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A finite element model of the human knee joint for the study of tibio-femoral contact.
    Donahue TL; Hull ML; Rashid MM; Jacobs CR
    J Biomech Eng; 2002 Jun; 124(3):273-80. PubMed ID: 12071261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recruitment of knee joint ligaments.
    Blankevoort L; Huiskes R; de Lange A
    J Biomech Eng; 1991 Feb; 113(1):94-103. PubMed ID: 2020181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validation of varus stress radiographs for anterior cruciate ligament and posterolateral corner knee injuries: A biomechanical study.
    McDonald LS; Waltz RA; Carney JR; Dewing CB; Lynch JR; Asher DB; Schuett DJ; LeClere LE
    Knee; 2016 Dec; 23(6):1064-1068. PubMed ID: 27806878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Limits of movement in the human knee. Effect of sectioning the posterior cruciate ligament and posterolateral structures.
    Grood ES; Stowers SF; Noyes FR
    J Bone Joint Surg Am; 1988 Jan; 70(1):88-97. PubMed ID: 3335577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Force measurements on the fibular collateral ligament, popliteofibular ligament, and popliteus tendon to applied loads.
    LaPrade RF; Tso A; Wentorf FA
    Am J Sports Med; 2004; 32(7):1695-701. PubMed ID: 15494335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Collateral ligament laxity in knees: what is normal?
    Deep K
    Clin Orthop Relat Res; 2014 Nov; 472(11):3426-31. PubMed ID: 25115587
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Medial collateral ligament insertion site and contact forces in the ACL-deficient knee.
    Ellis BJ; Lujan TJ; Dalton MS; Weiss JA
    J Orthop Res; 2006 Apr; 24(4):800-10. PubMed ID: 16514656
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of knee flexion angles for graft fixation on force distribution in double-bundle anterior cruciate ligament grafts.
    Miura K; Woo SL; Brinkley R; Fu YC; Noorani S
    Am J Sports Med; 2006 Apr; 34(4):577-85. PubMed ID: 16282574
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The biomechanical function of the anterolateral ligament of the knee.
    Parsons EM; Gee AO; Spiekerman C; Cavanagh PR
    Am J Sports Med; 2015 Mar; 43(3):669-74. PubMed ID: 25556221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.