These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 27111298)

  • 1. Global Dynamics and Exchange Kinetics of a Protein on the Surface of Nanoparticles Revealed by Relaxation-Based Solution NMR Spectroscopy.
    Ceccon A; Tugarinov V; Bax A; Clore GM
    J Am Chem Soc; 2016 May; 138(18):5789-92. PubMed ID: 27111298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Global Dynamics of a Protein on the Surface of Anisotropic Lipid Nanoparticles Derived from Relaxation-Based NMR Spectroscopy.
    Ceccon A; Kubatova N; Louis JM; Clore GM; Tugarinov V
    J Phys Chem B; 2022 Aug; 126(30):5646-5654. PubMed ID: 35877206
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Observation of Sub-Microsecond Protein Methyl-Side Chain Dynamics by Nanoparticle-Assisted NMR Spin Relaxation.
    Xiang X; Hansen AL; Yu L; Jameson G; Bruschweiler-Li L; Yuan C; Brüschweiler R
    J Am Chem Soc; 2021 Sep; 143(34):13593-13604. PubMed ID: 34428032
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decorrelating Kinetic and Relaxation Parameters in Exchange Saturation Transfer NMR: A Case Study of N-Terminal Huntingtin Peptides Binding to Unilamellar Lipid Vesicles.
    Ceccon A; Clore GM; Tugarinov V
    J Phys Chem B; 2018 Dec; 122(49):11271-11278. PubMed ID: 30156416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards interpretation of intermolecular paramagnetic relaxation enhancement outside the fast exchange limit.
    Ceccon A; Marius Clore G; Tugarinov V
    J Biomol NMR; 2016 Sep; 66(1):1-7. PubMed ID: 27558624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanosecond to microsecond protein dynamics probed by magnetic relaxation dispersion of buried water molecules.
    Persson E; Halle B
    J Am Chem Soc; 2008 Feb; 130(5):1774-87. PubMed ID: 18183977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microsecond Protein Dynamics from Combined Bloch-McConnell and Near-Rotary-Resonance R
    Marion D; Gauto DF; Ayala I; Giandoreggio-Barranco K; Schanda P
    Chemphyschem; 2019 Jan; 20(2):276-284. PubMed ID: 30444575
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Backbone dynamics of trp repressor studied by 15N NMR relaxation.
    Zheng Z; Czaplicki J; Jardetzky O
    Biochemistry; 1995 Apr; 34(15):5212-23. PubMed ID: 7711041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of phosphate head groups in biomembranes. Comprehensive analysis using phosphorus-31 nuclear magnetic resonance lineshape and relaxation time measurements.
    Dufourc EJ; Mayer C; Stohrer J; Althoff G; Kothe G
    Biophys J; 1992 Jan; 61(1):42-57. PubMed ID: 1540698
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Slow internal protein dynamics from water (1)H magnetic relaxation dispersion.
    Sunde EP; Halle B
    J Am Chem Soc; 2009 Dec; 131(51):18214-5. PubMed ID: 19954186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rotation of lipids in membranes: molecular dynamics simulation, 31P spin-lattice relaxation, and rigid-body dynamics.
    Klauda JB; Roberts MF; Redfield AG; Brooks BR; Pastor RW
    Biophys J; 2008 Apr; 94(8):3074-83. PubMed ID: 18192349
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The study of transient protein-nanoparticle interactions by solution NMR spectroscopy.
    Assfalg M; Ragona L; Pagano K; D'Onofrio M; Zanzoni S; Tomaselli S; Molinari H
    Biochim Biophys Acta Proteins Proteom; 2016 Jan; 1864(1):102-14. PubMed ID: 25936778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large relaxivity enhancement of paramagnetic lipid nanoparticles by restricting the local motions of the Gd(III) chelates.
    Kielar F; Tei L; Terreno E; Botta M
    J Am Chem Soc; 2010 Jun; 132(23):7836-7. PubMed ID: 20481537
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solid-state NMR approaches to internal dynamics of proteins: from picoseconds to microseconds and seconds.
    Krushelnitsky A; Reichert D; Saalwächter K
    Acc Chem Res; 2013 Sep; 46(9):2028-36. PubMed ID: 23875699
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of the backbone dynamics of interleukin-1 beta using two-dimensional inverse detected heteronuclear 15N-1H NMR spectroscopy.
    Clore GM; Driscoll PC; Wingfield PT; Gronenborn AM
    Biochemistry; 1990 Aug; 29(32):7387-401. PubMed ID: 2223770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective characterization of microsecond motions in proteins by NMR relaxation.
    Hansen DF; Feng H; Zhou Z; Bai Y; Kay LE
    J Am Chem Soc; 2009 Nov; 131(44):16257-65. PubMed ID: 19842628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterizing Protein Dynamics with NMR R
    Massi F; Peng JW
    Methods Mol Biol; 2018; 1688():205-221. PubMed ID: 29151211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative Multistate Binding Model of Silica Nanoparticle-Protein Interactions Obtained from Multinuclear Spin Relaxation.
    Jameson G; Xiang X; Brüschweiler R
    J Phys Chem B; 2022 Nov; 126(44):9089-9094. PubMed ID: 36316009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing potential bias in the determination of rotational correlation times of proteins by NMR relaxation.
    Lee AL; Wand AJ
    J Biomol NMR; 1999 Feb; 13(2):101-12. PubMed ID: 10070752
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advances in solid-state relaxation methodology for probing site-specific protein dynamics.
    Lewandowski JR
    Acc Chem Res; 2013 Sep; 46(9):2018-27. PubMed ID: 23621579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.