These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 27111507)

  • 1. Automated structure modeling of large protein assemblies using crosslinks as distance restraints.
    Ferber M; Kosinski J; Ori A; Rashid UJ; Moreno-Morcillo M; Simon B; Bouvier G; Batista PR; Müller CW; Beck M; Nilges M
    Nat Methods; 2016 Jun; 13(6):515-20. PubMed ID: 27111507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proper evaluation of chemical cross-linking-based spatial restraints improves the precision of modeling homo-oligomeric protein complexes.
    Gaber A; Gunčar G; Pavšič M
    BMC Bioinformatics; 2019 Sep; 20(1):464. PubMed ID: 31500562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative Structural Interpretation of Protein Crosslinks.
    Filella-Merce I; Bardiaux B; Nilges M; Bouvier G
    Structure; 2020 Jan; 28(1):75-82.e4. PubMed ID: 31753619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tightening the Crosslinking Distance Restraints for Better Resolution of Protein Structure and Dynamics.
    Gong Z; Ye SX; Tang C
    Structure; 2020 Oct; 28(10):1160-1167.e3. PubMed ID: 32763142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A strategy for dissecting the architectures of native macromolecular assemblies.
    Shi Y; Pellarin R; Fridy PC; Fernandez-Martinez J; Thompson MK; Li Y; Wang QJ; Sali A; Rout MP; Chait BT
    Nat Methods; 2015 Dec; 12(12):1135-8. PubMed ID: 26436480
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Xlink Analyzer: software for analysis and visualization of cross-linking data in the context of three-dimensional structures.
    Kosinski J; von Appen A; Ori A; Karius K; Müller CW; Beck M
    J Struct Biol; 2015 Mar; 189(3):177-83. PubMed ID: 25661704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling Protein Complexes Using Restraints from Crosslinking Mass Spectrometry.
    Bullock JMA; Sen N; Thalassinos K; Topf M
    Structure; 2018 Jul; 26(7):1015-1024.e2. PubMed ID: 29804821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distance restraints from crosslinking mass spectrometry: mining a molecular dynamics simulation database to evaluate lysine-lysine distances.
    Merkley ED; Rysavy S; Kahraman A; Hafen RP; Daggett V; Adkins JN
    Protein Sci; 2014 Jun; 23(6):747-59. PubMed ID: 24639379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. xTract: software for characterizing conformational changes of protein complexes by quantitative cross-linking mass spectrometry.
    Walzthoeni T; Joachimiak LA; Rosenberger G; Röst HL; Malmström L; Leitner A; Frydman J; Aebersold R
    Nat Methods; 2015 Dec; 12(12):1185-90. PubMed ID: 26501516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein structure dynamics by crosslinking mass spectrometry.
    Chen ZA; Rappsilber J
    Curr Opin Struct Biol; 2023 Jun; 80():102599. PubMed ID: 37104977
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Importance of Non-accessible Crosslinks and Solvent Accessible Surface Distance in Modeling Proteins with Restraints From Crosslinking Mass Spectrometry.
    Matthew Allen Bullock J; Schwab J; Thalassinos K; Topf M
    Mol Cell Proteomics; 2016 Jul; 15(7):2491-500. PubMed ID: 27150526
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A deep learning model for predicting optimal distance range in crosslinking mass spectrometry data.
    Cohen S; Schneidman-Duhovny D
    Proteomics; 2023 Sep; 23(17):e2200341. PubMed ID: 37070547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactome and interface protocol (2IP): a novel strategy for high sensitivity topology mapping of protein complexes.
    Weerasekera R; She YM; Markham KA; Bai Y; Opalka N; Orlicky S; Sicheri F; Kislinger T; Schmitt-Ulms G
    Proteomics; 2007 Nov; 7(21):3835-52. PubMed ID: 17960736
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular architecture of the yeast Elongator complex reveals an unexpected asymmetric subunit arrangement.
    Setiaputra DT; Cheng DT; Lu S; Hansen JM; Dalwadi U; Lam CH; To JL; Dong MQ; Yip CK
    EMBO Rep; 2017 Feb; 18(2):280-291. PubMed ID: 27872205
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineered disulfide crosslinking to measure conformational changes in the 26S proteasome.
    Reed RG; Tomko RJ
    Methods Enzymol; 2019; 619():145-159. PubMed ID: 30910019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. XLmap: an R package to visualize and score protein structure models based on sites of protein cross-linking.
    Schweppe DK; Chavez JD; Bruce JE
    Bioinformatics; 2016 Jan; 32(2):306-8. PubMed ID: 26411867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measuring spatial restraints on native protein complexes using isotope-tagged chemical cross-linking and mass spectrometry.
    Herzog F
    Methods Mol Biol; 2014; 1091():259-73. PubMed ID: 24203339
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crosslinking and Mass Spectrometry: An Integrated Technology to Understand the Structure and Function of Molecular Machines.
    Leitner A; Faini M; Stengel F; Aebersold R
    Trends Biochem Sci; 2016 Jan; 41(1):20-32. PubMed ID: 26654279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leveraging crosslinking mass spectrometry in structural and cell biology.
    Graziadei A; Rappsilber J
    Structure; 2022 Jan; 30(1):37-54. PubMed ID: 34895473
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural characterization of assemblies from overall shape and subcomplex compositions.
    Alber F; Kim MF; Sali A
    Structure; 2005 Mar; 13(3):435-45. PubMed ID: 15766545
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.