These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
309 related articles for article (PubMed ID: 27111597)
1. Improving the performance of quantum dot sensitized solar cells through CdNiS quantum dots with reduced recombination and enhanced electron lifetime. Gopi CV; Venkata-Haritha M; Seo H; Singh S; Kim SK; Shiratani M; Kim HJ Dalton Trans; 2016 May; 45(20):8447-57. PubMed ID: 27111597 [TBL] [Abstract][Full Text] [Related]
2. Enhanced light absorption and charge recombination control in quantum dot sensitized solar cells using tin doped cadmium sulfide quantum dots. Muthalif MPA; Sunesh CD; Choe Y J Colloid Interface Sci; 2019 Jan; 534():291-300. PubMed ID: 30237116 [TBL] [Abstract][Full Text] [Related]
3. Improved photovoltaic performance and stability of quantum dot sensitized solar cells using Mn-ZnSe shell structure with enhanced light absorption and recombination control. Gopi CV; Venkata-Haritha M; Kim SK; Kim HJ Nanoscale; 2015 Aug; 7(29):12552-63. PubMed ID: 26140442 [TBL] [Abstract][Full Text] [Related]
4. Recombination control in high-performance quantum dot-sensitized solar cells with a novel TiO2/ZnS/CdS/ZnS heterostructure. Lee YS; Gopi CV; Venkata-Haritha M; Kim HJ Dalton Trans; 2016 Aug; 45(32):12914-23. PubMed ID: 27477125 [TBL] [Abstract][Full Text] [Related]
5. Improved performance of CuInS2 quantum dot-sensitized solar cells based on a multilayered architecture. Chang JY; Lin JM; Su LF; Chang CF ACS Appl Mater Interfaces; 2013 Sep; 5(17):8740-52. PubMed ID: 23937511 [TBL] [Abstract][Full Text] [Related]
6. Incorporation of Mn Zhang C; Liu S; Liu X; Deng F; Xiong Y; Tsai FC R Soc Open Sci; 2018 Mar; 5(3):171712. PubMed ID: 29657776 [TBL] [Abstract][Full Text] [Related]
7. CuS/CdS Quantum Dot Composite Sensitizer and Its Applications to Various TiO2 Mesoporous Film-Based Solar Cell Devices. Kim M; Ochirbat A; Lee HJ Langmuir; 2015 Jul; 31(27):7609-15. PubMed ID: 26086801 [TBL] [Abstract][Full Text] [Related]
8. Efficiency Enhancement of Solid-State CuInS Fu B; Deng C; Yang L Nanoscale Res Lett; 2019 Jun; 14(1):198. PubMed ID: 31172299 [TBL] [Abstract][Full Text] [Related]
9. Effect of photoanode surface coverage by a sensitizer on the photovoltaic performance of titania based CdS quantum dot sensitized solar cells. Prasad RM; Pathan HM Nanotechnology; 2016 Apr; 27(14):145402. PubMed ID: 26916535 [TBL] [Abstract][Full Text] [Related]
10. Photovoltaic performance of bithiazole-bridged dyes-sensitized solar cells employing semiconducting quantum dot CuInS2 as barrier layer material. Guo F; He J; Li J; Wu W; Hang Y; Hua J J Colloid Interface Sci; 2013 Oct; 408():59-65. PubMed ID: 23928484 [TBL] [Abstract][Full Text] [Related]
11. Structural evolution from the CdSSe alloy to the CdS/CdSe core/shell in Cd(S and Se) composite quantum dots and its impact on the performance of sensitized solar cells. Fang J; Lv W; Lei Y; Deng J; Zhang P; Huang W Dalton Trans; 2021 Oct; 50(41):14672-14683. PubMed ID: 34585707 [TBL] [Abstract][Full Text] [Related]
12. Passivation of PbS Quantum Dot Surface with l-Glutathione in Solid-State Quantum-Dot-Sensitized Solar Cells. Jumabekov AN; Cordes N; Siegler TD; Docampo P; Ivanova A; Fominykh K; Medina DD; Peter LM; Bein T ACS Appl Mater Interfaces; 2016 Feb; 8(7):4600-7. PubMed ID: 26771519 [TBL] [Abstract][Full Text] [Related]
13. Recombination Suppression in PbS Quantum Dot Heterojunction Solar Cells by Energy-Level Alignment in the Quantum Dot Active Layers. Ding C; Zhang Y; Liu F; Nakazawa N; Huang Q; Hayase S; Ogomi Y; Toyoda T; Wang R; Shen Q ACS Appl Mater Interfaces; 2018 Aug; 10(31):26142-26152. PubMed ID: 28862833 [TBL] [Abstract][Full Text] [Related]
14. Enhanced performance of PbS-sensitized solar cells via controlled successive ionic-layer adsorption and reaction. Abbas MA; Basit MA; Park TJ; Bang JH Phys Chem Chem Phys; 2015 Apr; 17(15):9752-60. PubMed ID: 25773573 [TBL] [Abstract][Full Text] [Related]
15. A stoichiometric CdS interlayer for the photovoltaic performance enhancement of quantum-dot sensitized solar cells. Chen S; Wang Y; Lu S; Liu Y; Zhang X Phys Chem Chem Phys; 2019 Feb; 21(7):3970-3975. PubMed ID: 30706911 [TBL] [Abstract][Full Text] [Related]
16. A strategy to improve the energy conversion efficiency and stability of quantum dot-sensitized solar cells using manganese-doped cadmium sulfide quantum dots. Gopi CV; Venkata-Haritha M; Kim SK; Kim HJ Dalton Trans; 2015 Jan; 44(2):630-8. PubMed ID: 25381887 [TBL] [Abstract][Full Text] [Related]
17. The effect of TiO2 nanoflowers as a compact layer for CdS quantum-dot sensitized solar cells with improved performance. Rao SS; Durga IK; Gopi CV; Venkata Tulasivarma C; Kim SK; Kim HJ Dalton Trans; 2015 Jul; 44(28):12852-62. PubMed ID: 26102365 [TBL] [Abstract][Full Text] [Related]
18. Dynamic study of highly efficient CdS/CdSe quantum dot-sensitized solar cells fabricated by electrodeposition. Yu XY; Liao JY; Qiu KQ; Kuang DB; Su CY ACS Nano; 2011 Dec; 5(12):9494-500. PubMed ID: 22032641 [TBL] [Abstract][Full Text] [Related]
19. High performance PbS quantum dot sensitized solar cells via electric field assisted in situ chemical deposition on modulated TiO2 nanotube arrays. Tao L; Xiong Y; Liu H; Shen W Nanoscale; 2014 Jan; 6(2):931-8. PubMed ID: 24281658 [TBL] [Abstract][Full Text] [Related]
20. Highly efficient quantum dot-sensitized TiO2 solar cells based on multilayered semiconductors (ZnSe/CdS/CdSe). Yang L; McCue C; Zhang Q; Uchaker E; Mai Y; Cao G Nanoscale; 2015 Feb; 7(7):3173-80. PubMed ID: 25615827 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]