BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 27112061)

  • 1. Functional calcium phosphate composites in nanomedicine.
    Ridi F; Meazzini I; Castroflorio B; Bonini M; Berti D; Baglioni P
    Adv Colloid Interface Sci; 2017 Jun; 244():281-295. PubMed ID: 27112061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-healing hybrid nanocomposites consisting of bisphosphonated hyaluronan and calcium phosphate nanoparticles.
    Nejadnik MR; Yang X; Bongio M; Alghamdi HS; van den Beucken JJ; Huysmans MC; Jansen JA; Hilborn J; Ossipov D; Leeuwenburgh SC
    Biomaterials; 2014 Aug; 35(25):6918-29. PubMed ID: 24862440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adding MgO nanoparticles to hydroxyapatite-PLLA nanocomposites for improved bone tissue engineering applications.
    Hickey DJ; Ercan B; Sun L; Webster TJ
    Acta Biomater; 2015 Mar; 14():175-84. PubMed ID: 25523875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stabilisation of amorphous calcium phosphate in polyethylene glycol hydrogels.
    Schweikle M; Bjørnøy SH; van Helvoort ATJ; Haugen HJ; Sikorski P; Tiainen H
    Acta Biomater; 2019 May; 90():132-145. PubMed ID: 30905863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The fabrication of nanocomposites via calcium phosphate formation on gelatin-chitosan network and the gelatin influence on the properties of biphasic composites.
    Babaei Z; Jahanshahi M; Rabiee SM
    Mater Sci Eng C Mater Biol Appl; 2013 Jan; 33(1):370-5. PubMed ID: 25428083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium phosphate-based nanosystems for advanced targeted nanomedicine.
    Degli Esposti L; Carella F; Adamiano A; Tampieri A; Iafisco M
    Drug Dev Ind Pharm; 2018 Aug; 44(8):1223-1238. PubMed ID: 29528248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomimetic and mesoporous nano-hydroxyapatite for bone tissue application: a short review.
    Molino G; Palmieri MC; Montalbano G; Fiorilli S; Vitale-Brovarone C
    Biomed Mater; 2020 Feb; 15(2):022001. PubMed ID: 31805539
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomolecule-assisted green synthesis of nanostructured calcium phosphates and their biomedical applications.
    Qi C; Musetti S; Fu LH; Zhu YJ; Huang L
    Chem Soc Rev; 2019 May; 48(10):2698-2737. PubMed ID: 31080987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcium Phosphate Mineralization in Cellulose Derivative/Poly(acrylic acid) Composites Having a Chiral Nematic Mesomorphic Structure.
    Ogiwara T; Katsumura A; Sugimura K; Teramoto Y; Nishio Y
    Biomacromolecules; 2015 Dec; 16(12):3959-69. PubMed ID: 26536381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel rechargeable calcium phosphate dental nanocomposite.
    Zhang L; Weir MD; Chow LC; Antonucci JM; Chen J; Xu HH
    Dent Mater; 2016 Feb; 32(2):285-93. PubMed ID: 26743970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functionalization of oligo(poly(ethylene glycol)fumarate) hydrogels with finely dispersed calcium phosphate nanocrystals for bone-substituting purposes.
    Leeuwenburgh SC; Jansen JA; Mikos AG
    J Biomater Sci Polym Ed; 2007; 18(12):1547-64. PubMed ID: 17988519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydroxyapatite-TiO(2)-based nanocomposites synthesized in supercritical CO(2) for bone tissue engineering: physical and mechanical properties.
    Salarian M; Xu WZ; Wang Z; Sham TK; Charpentier PA
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):16918-31. PubMed ID: 25184699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surfactant-assisted synthesis of polyvinylpyrrolidone-hydroxyapatite composites as a bone filler.
    Meskinfam Langroudi M; Giahi Saravani M; Nouri A
    J Appl Biomater Funct Mater; 2017 Nov; 15(4):e334-e340. PubMed ID: 28430344
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Halloysite-alkaline phosphatase system-A potential bioactive component of scaffold for bone tissue engineering.
    Pietraszek A; Karewicz A; Widnic M; Lachowicz D; Gajewska M; Bernasik A; Nowakowska M
    Colloids Surf B Biointerfaces; 2019 Jan; 173():1-8. PubMed ID: 30261344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advances in synthesis of calcium phosphate crystals with controlled size and shape.
    Lin K; Wu C; Chang J
    Acta Biomater; 2014 Oct; 10(10):4071-102. PubMed ID: 24954909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Injectable methylcellulose hydrogel containing calcium phosphate nanoparticles for bone regeneration.
    Kim MH; Kim BS; Park H; Lee J; Park WH
    Int J Biol Macromol; 2018 Apr; 109():57-64. PubMed ID: 29246871
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of cyclic acetal hydroxyapatite nanocomposites for craniofacial tissue engineering.
    Patel M; Patel KJ; Caccamese JF; Coletti DP; Sauk JJ; Fisher JP
    J Biomed Mater Res A; 2010 Aug; 94(2):408-18. PubMed ID: 20186741
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and characterization of nano-hydroxyapatite within chitosan matrix.
    Rogina A; Ivanković M; Ivanković H
    Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4539-44. PubMed ID: 24094157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluating apatite formation and osteogenic activity of electrospun composites for bone tissue engineering.
    Patlolla A; Arinzeh TL
    Biotechnol Bioeng; 2014 May; 111(5):1000-17. PubMed ID: 24264603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acellular mineral deposition within injectable, dual-gelling hydrogels for bone tissue engineering.
    Vo TN; Tatara AM; Santoro M; van den Beucken JJ; Leeuwenburgh SC; Jansen JA; Mikos AG
    J Biomed Mater Res A; 2017 Jan; 105(1):110-117. PubMed ID: 27557993
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.