These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 27112530)
1. MEMS Based Broadband Piezoelectric Ultrasonic Energy Harvester (PUEH) for Enabling Self-Powered Implantable Biomedical Devices. Shi Q; Wang T; Lee C Sci Rep; 2016 Apr; 6():24946. PubMed ID: 27112530 [TBL] [Abstract][Full Text] [Related]
2. An ultrasound-induced wireless power supply based on AlN piezoelectric micromachined ultrasonic transducers. Rong Z; Zhang M; Ning Y; Pang W Sci Rep; 2022 Sep; 12(1):16174. PubMed ID: 36171230 [TBL] [Abstract][Full Text] [Related]
3. Flexible piezoelectric ultrasonic energy harvester array for bio-implantable wireless generator. Jiang L; Yang Y; Chen R; Lu G; Li R; Li D; Humayun MS; Shung KK; Zhu J; Chen Y; Zhou Q Nano Energy; 2019 Feb; 56():216-224. PubMed ID: 31475091 [TBL] [Abstract][Full Text] [Related]
4. Self-powered cardiac pacemaker enabled by flexible single crystalline PMN-PT piezoelectric energy harvester. Hwang GT; Park H; Lee JH; Oh S; Park KI; Byun M; Park H; Ahn G; Jeong CK; No K; Kwon H; Lee SG; Joung B; Lee KJ Adv Mater; 2014 Jul; 26(28):4880-7. PubMed ID: 24740465 [TBL] [Abstract][Full Text] [Related]
5. Noninvasive control of the power transferred to an implanted device by an ultrasonic transcutaneous energy transfer link. Shmilovitz D; Ozeri S; Wang CC; Spivak B IEEE Trans Biomed Eng; 2014 Apr; 61(4):995-1004. PubMed ID: 24013825 [TBL] [Abstract][Full Text] [Related]
6. Ultrasonic transcutaneous energy transfer for powering implanted devices. Ozeri S; Shmilovitz D Ultrasonics; 2010 May; 50(6):556-66. PubMed ID: 20031183 [TBL] [Abstract][Full Text] [Related]
7. Compensating for Tissue Changes in an Ultrasonic Power Link for Implanted Medical Devices. Vihvelin H; Leadbetter J; Bance M; Brown JA; Adamson RB IEEE Trans Biomed Circuits Syst; 2016 Apr; 10(2):404-11. PubMed ID: 26054073 [TBL] [Abstract][Full Text] [Related]
8. Simultaneous backward data transmission and power harvesting in an ultrasonic transcutaneous energy transfer link employing acoustically dependent electric impedance modulation. Ozeri S; Shmilovitz D Ultrasonics; 2014 Sep; 54(7):1929-37. PubMed ID: 24861424 [TBL] [Abstract][Full Text] [Related]
9. Wireless Ultrasonic Communication for Biomedical Injectable Implantable Device. Jaafar B; Soltan A; Neasham J; Degenaar P Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4024-4027. PubMed ID: 31946754 [TBL] [Abstract][Full Text] [Related]
10. Micro electro-mechanical system piezoelectric cantilever array for a broadband vibration energy harvester. Chun I; Lee HW; Kwon KH J Nanosci Nanotechnol; 2014 Dec; 14(12):9253-7. PubMed ID: 25971046 [TBL] [Abstract][Full Text] [Related]
11. Development of Multi-Degree-Of-Freedom Piezoelectric Energy Harvester Using Interdigital Shaped Cantilevers. Cho H; Park J; Park JY J Nanosci Nanotechnol; 2016 May; 16(5):5252-4. PubMed ID: 27483909 [TBL] [Abstract][Full Text] [Related]
12. Inductive and ultrasonic multi-tier interface for low-power, deeply implantable medical devices. Sanni A; Vilches A; Toumazou C IEEE Trans Biomed Circuits Syst; 2012 Aug; 6(4):297-308. PubMed ID: 23853174 [TBL] [Abstract][Full Text] [Related]
13. Omnidirectional Ultrasonic Powering for Millimeter-Scale Implantable Devices. Song SH; Kim A; Ziaie B IEEE Trans Biomed Eng; 2015 Nov; 62(11):2717-23. PubMed ID: 26080376 [TBL] [Abstract][Full Text] [Related]
14. Nonlinear characteristics of a circular plate piezoelectric harvester with relatively large deflection near resonance. Xue H; Hu H IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Sep; 55(9):2092-6. PubMed ID: 18986906 [TBL] [Abstract][Full Text] [Related]
15. In vivo demonstration of a self-sustaining, implantable, stimulated-muscle-powered piezoelectric generator prototype. Lewandowski BE; Kilgore KL; Gustafson KJ Ann Biomed Eng; 2009 Nov; 37(11):2390-401. PubMed ID: 19657742 [TBL] [Abstract][Full Text] [Related]
16. Self-Powered Implantable Medical Devices: Photovoltaic Energy Harvesting Review. Zhao J; Ghannam R; Htet KO; Liu Y; Law MK; Roy VAL; Michel B; Imran MA; Heidari H Adv Healthc Mater; 2020 Sep; 9(17):e2000779. PubMed ID: 32729228 [TBL] [Abstract][Full Text] [Related]
17. Broadband piezoelectric energy harvesting devices using multiple bimorphs with different operating frequencies. Xue H; Hu Y; Wang QM IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Sep; 55(9):2104-8. PubMed ID: 18986908 [TBL] [Abstract][Full Text] [Related]
18. MEMS-based power generation techniques for implantable biosensing applications. Lueke J; Moussa WA Sensors (Basel); 2011; 11(2):1433-60. PubMed ID: 22319362 [TBL] [Abstract][Full Text] [Related]
19. A Method and Analysis to Enable Efficient Piezoelectric Transducer-Based Ultrasonic Power and Data Links for Miniaturized Implantable Medical Devices. Sonmezoglu S; Darvishian A; Shen K; Bustamante MJ; Kandala A; Maharbiz MM IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Nov; 68(11):3362-3370. PubMed ID: 34197320 [TBL] [Abstract][Full Text] [Related]
20. Thermoelectric Energy Harvesting for Implantable Medical Devices. Janes T; Petrosky S; Buhr T; Karsilayan AI; Silva-Martinez J; Genzer D; Das V; Stotts L Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():1547-1550. PubMed ID: 34891579 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]