BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 27112530)

  • 21. A shape-adaptive thin-film-based approach for 50% high-efficiency energy generation through micro-grating sliding electrification.
    Zhu G; Zhou YS; Bai P; Meng XS; Jing Q; Chen J; Wang ZL
    Adv Mater; 2014 Jun; 26(23):3788-96. PubMed ID: 24692147
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ultrasonic transcutaneous energy transfer using a continuous wave 650 kHz Gaussian shaded transmitter.
    Ozeri S; Shmilovitz D; Singer S; Wang CC
    Ultrasonics; 2010 Jun; 50(7):666-74. PubMed ID: 20219226
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A laser-activated MEMS transducer for efficient generation of narrowband longitudinal ultrasonic waves.
    Chen X; Stratoudaki T; Sharples SD; Clark M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Feb; 58(2):470-6. PubMed ID: 21342832
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Wireless Power Transmission for Implantable Medical Devices Using Focused Ultrasound and a Miniaturized 1-3 Piezoelectric Composite Receiving Transducer.
    Yi X; Zheng W; Cao H; Wang S; Feng X; Yang Z
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Dec; 68(12):3592-3598. PubMed ID: 34357865
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Flexible High-Performance Lead-Free Na0.47K0.47Li0.06NbO3 Microcube-Structure-Based Piezoelectric Energy Harvester.
    Gupta MK; Kim SW; Kumar B
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):1766-73. PubMed ID: 26735739
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effects of first-order strain gradient in micro piezoelectric-bimorph power harvesters.
    Hu Y; Wang J; Yang F; Xue H; Hu H; Wang J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Apr; 58(4):849-52. PubMed ID: 21507763
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Design of Tunable Ultrasonic Receivers for Efficient Powering of Implantable Medical Devices With Reconfigurable Power Loads.
    Chang TC; Weber MJ; Wang ML; Charthad J; Khuri-Yakub BP; Arbabian A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Oct; 63(10):1554-1562. PubMed ID: 27623580
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Energy harvesting for human wearable and implantable bio-sensors.
    Mitcheson PD
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3432-6. PubMed ID: 21097254
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An Implantable Ultrasonically Powered System for Optogenetic Stimulation with Power-Efficient Active Rectifier and Charge-Reuse Capability.
    Rashidi A; Laursen K; Hosseini S; Huynh HA; Moradi F
    IEEE Trans Biomed Circuits Syst; 2019 Dec; 13(6):1362-1371. PubMed ID: 31647446
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biodegradable nanofiber-based piezoelectric transducer.
    Curry EJ; Le TT; Das R; Ke K; Santorella EM; Paul D; Chorsi MT; Tran KTM; Baroody J; Borges ER; Ko B; Golabchi A; Xin X; Rowe D; Yue L; Feng J; Morales-Acosta MD; Wu Q; Chen IP; Cui XT; Pachter J; Nguyen TD
    Proc Natl Acad Sci U S A; 2020 Jan; 117(1):214-220. PubMed ID: 31871178
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Implantable Energy-Harvesting Devices.
    Shi B; Li Z; Fan Y
    Adv Mater; 2018 Nov; 30(44):e1801511. PubMed ID: 30043422
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Piezoelectric micromachined ultrasound transducer (PMUT) arrays for integrated sensing, actuation and imaging.
    Qiu Y; Gigliotti JV; Wallace M; Griggio F; Demore CE; Cochran S; Trolier-McKinstry S
    Sensors (Basel); 2015 Apr; 15(4):8020-41. PubMed ID: 25855038
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Wireless charing pillow for a fully implantable hearing aid: Design of a circular array coil based on finite element analysis for reducing magnetic weak zones.
    Lim HG; Kim JH; Shin DH; Woo ST; Seong KW; Lee JH; Kim MN; Wei Q; Cho JH
    Biomed Mater Eng; 2015; 26 Suppl 1():S1741-7. PubMed ID: 26405942
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ultrasound-Powered Implants: A Critical Review of Piezoelectric Material Selection and Applications.
    Turner BL; Senevirathne S; Kilgour K; McArt D; Biggs M; Menegatti S; Daniele MA
    Adv Healthc Mater; 2021 Sep; 10(17):e2100986. PubMed ID: 34235886
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An ultrasonically controlled switching system for power management in implantable devices.
    Zhou J; Kim A; Ziaie B
    Biomed Microdevices; 2018 May; 20(2):42. PubMed ID: 29789965
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Energy harvesting from cerebrospinal fluid pressure fluctuations for self-powered neural implants.
    Beker L; Benet A; Meybodi AT; Eovino B; Pisano AP; Lin L
    Biomed Microdevices; 2017 Jun; 19(2):32. PubMed ID: 28425028
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Backward Data Transfer From Deeply Implanted Device Employing Ultrasonic Load Amplitude-Phase Shift Keying.
    Ozeri S; Amrani O
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Jan; 69(1):199-207. PubMed ID: 34623265
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Energy trapping in power transmission through an elastic plate by finite piezoelectric transducers.
    Yang Z; Yang J; Hu Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Nov; 55(11):2493-501. PubMed ID: 19049929
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Direct Powering a Real Cardiac Pacemaker by Natural Energy of a Heartbeat.
    Li N; Yi Z; Ma Y; Xie F; Huang Y; Tian Y; Dong X; Liu Y; Shao X; Li Y; Jin L; Liu J; Xu Z; Yang B; Zhang H
    ACS Nano; 2019 Mar; 13(3):2822-2830. PubMed ID: 30784259
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A fully sustainable, self-poled, bio-waste based piezoelectric nanogenerator: electricity generation from pomelo fruit membrane.
    Bairagi S; Ghosh S; Ali SW
    Sci Rep; 2020 Jul; 10(1):12121. PubMed ID: 32694668
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.